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Abstract. The residue number system (RNS) has been used for many applications
such as cryptography, communication components, digital signal processing, digital filter,
Fermat number transform (FNT), encryption operation and partial encryption of inter-
national data encryption algorithm (IDEA), which can provide significant speed savings
compared with binary system. In this paper, an area-efficient multifunction RNS modulo
(2n ± 1) squarer is proposed. By using common partial product arrays, our proposed
modulo (2n ± 1) squarer based on modified booth encoding schemes could perform both
modulo (2n + 1) squaring and modulo (2n − 1) squaring operations on the same hard-
ware as demanded. Our proposed squarer can achieve significant 24.19% and 46.68%
area savings compared with the hardware required for individual modulo (2n + 1) squarer
and modulo (2n − 1) squarer for n = 8 and 16, respectively. Our hardware is imple-
mented using Xilinx Spartan 3E FPGA.
Keywords: Field programmable gate array (FPGA), Residue number system (RNS),
Modulo (2n ± 1) squarer, Computer arithmetic

1. Introduction. The residue number system (RNS) can be applied to cryptography,
communication components, digital signal processing, digital filter, Fermat number trans-
form (FNT), encryption operation and partial encryption of international data encryption
algorithm (IDEA). The benefit of using RNS can provide significant speedup over binary
system due to the fact that limited carry propagation is required in RNS.

So far, {2n+1, 2n−1} is one of the most commonly used moduli sets for RNS operations
applied in digital signal processing, pseudorandom number generation, cryptography and
digital filter [1-15]. There were many works such as modulo (2n + 1) squarer [7], modulo
(2n + 1) multipliers [8,9,11,12,14,15] and modulo (2n − 1) multipliers [10-12] presented in
previous literature. Among these modulo squaring and multiplication computations, par-
tial products (PP) and carry save adder (CSA) are commonly adopted in modulo (2n +1)
[11,13,15] or modulo (2n − 1) adder [11] which is used to get the final modulo compu-
tation result. In the classification of modulo input/output format, diminished-1 [7,8,13]
and weighted [9,11,12,14,15] representatives are the commonly used. In diminished-1 us-
age, every number is subtracted by one so that n-bit adders can be used instead of using
(n+1)-bit adders for modulo operations. Considering the tradeoff of delay time and area
cost, diminished-1 input and weighted output representation are used in our proposed
modulo (2n ± 1) squarer design.

In our work, our motivation is to develop a multifunction RNS modulo (2n±1) squarer
using modified booth encoder scheme which can be operated for two squaring functions
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on the same hardware for slightly increased delay. Since the squaring operations are
different from the operations for multiplication or multiplication and accumulation (MAC)
proposed in [15], our work is to propose more area-efficient implementation based on
improving previous work proposed in [7].

The remainder of this paper is organized as follows. In Section 2, we will review previous
related methods for modulo RNS multiplication and squaring operations. In Section 3, an
area-efficient modulo (2n ± 1) squarer using modified booth encoding scheme is proposed.
Field programmable gate array (FPGA) hardware implementation will be presented in
Section 4. Finally, Section 5 draws the conclusions.

2. Previous Related Methods for Modulo RNS Multiplication and Squaring
Operations. The architecture for modulo (2n ± 1) squaring and multiplications are very
similar in all aspects for hardware implementation, with only one difference being that the
number of partial products in modulo (2n±1) squarer is fewer than that in modulo (2n±1)
multiplication. Therefore, in this section, we will firstly describe the basic operations of
modulo (2n +1) and modulo (2n−1) multipliers, and then discuss the operations required
for modulo (2n + 1) squarer in previous literature. In previous literature, there were
many works about modulo (2n + 1) multipliers [8,9,11,12,14,15] and modulo (2n − 1)
multipliers [10-12]. The mathematical equations about modulo (2n + 1) and modulo
(2n − 1) multipliers are shown in Equation (1) and Equation (2), respectively.
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In 2005, Vergos and Efstathiou [7] presented diminished-1 modulo (2n + 1) squarer,
and Vergos’s mathematical equation about diminished-1 based modulo (2n +1) squarer is
shown in Equation (3) and Equation (4). In Equation (3) and Equation (4), A is (n + 1)
bits input number, A−1 is denoted as diminished-1 representation, Q denotes the squaring
result of A−1 modulo (2n + 1), Q−1 represents diminished-1 of output Q, ppi is the ith
row partial product and Ci denotes the ith row correction factor. We can observe that
the Vergos’s method proposed in [7] can still be improved in hardware area and delay
consideration, which will be described in Section 3.
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To the best of our knowledge, there is not any multifunction modulo (2n ± 1) squarer
using the same hardware being proposed. In this work, we will propose area-efficient
multifunction modulo (2n ± 1) squarer using modified booth encoding.
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3. Proposed Area-Efficient Modulo (2n±1) Squarer Using Modified Booth En-
coding. The derived mathematical equation of our proposed multifunction RNS modulo
(2n±1) squarer using modified booth encoder is shown in Equation (5) and Equation (6).
Let A−1 be an n-bit unsigned binary number denoted as A−1 = an−1an−2 . . . a1a0. | · |2n±1

is denoted as modulo (2n + 1) or modulo (2n − 1) operation. It should be noted that we
use diminished-1 input A−1 representative in our work. A−1 represents the input value
A subtracted by one. The output Q is the final result which is represented by weighted
representations to fit the correct numbers. In Equation (6), W is the compensation factor
for modulo (2n + 1) squaring operation, which includes the inversion of A−1 and Z vector
which will be shown in Figure 5.

Let A−1 =
n−1∑
i=0

2iai,∣∣A2
−1

∣∣
2n±1

= |A−1 × A−1|2n±1

= |A−1 × [−an(2n − 1) + an−12
n−1 + · · · + a22

2 + a12 + a0]|2n±1

= |A−1 × [−an(2n+1 − 1) + an2n + an−12
n−1 + · · · + a22

2 + a12 + a0]|2n±1

= |A−1 × [2n(an + an−1 − 2an+1) + 2n−2(an−2 + an−3 − 2an−1) + · · ·
+(a0 + an − 2a1)]|2n±1

=

∣∣∣∣∣∑
i

A−1 × 22i(a2i−1 + a2i − 2a2i+1)

∣∣∣∣∣
2n±1

(5)

|Q|2n±1 =
∣∣A2

−1

∣∣
2n±1

=



∣∣∣∣∣
PPi∑

i

∣∣∣∣∣
2n−1

, for modulo 2n − 1∣∣∣∣∣
PPi∑

i

+W

∣∣∣∣∣
2n+1

, for modulo 2n + 1, W is compensation factor

(6)
The block diagram of proposed multifunction RNS modulo (2n±1) squarer using mod-

ified booth encoder is shown in Figure 1. These blocks contain booth encoder, booth
selector, partial product addition array and carry save adder array. Figure 2 is our pro-
posed partial product hardware architecture of multifunction RNS modulo (28±1) squarer.
In Figure 2, S is the control signal which is used to control module (2n + 1) or module
(2n − 1). BE and BS represent booth encoder and booth select circuit block. PP is the
partial product value of each block. The corresponding circuits of booth encoder (BE)

Figure 1. Block diagram of proposed modulo 2n ± 1 squarer
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Figure 2. Proposed architecture for generating partial products in modulo
(28 ± 1) squarer

Figure 3. The architecture of booth encoder (BE) circuit [12]

Figure 4. The architecture of booth selector (BS) circuit [15]

and booth select (BS) are shown in Figure 3 and Figure 4, respectively. In Figure 3, BE
is used to decide multiply one (1x) or multiply two (2x) and produce the value of output
Z. The architecture of proposed carry save adder (CSA) array in modulo (2n±1) squarer
is shown in Figure 5. In Figure 5, taking n to be 8, S signal is used to control modulo
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Figure 5. Proposed multifunction RNS modulo (28±1) squarer carry save
adder (CSA) arrays

Figure 6. Numerical example of our proposed 2422 modulo (28 + 1) squarer

(2n+1) or modulo (2n − 1) (S = 0 is for modulo (2n − 1) and S = 1 is for modulo (2n +1)
squaring operation, respectively). Compensation factor W is needed in modulo (2n + 1),
and it includes the inversion of input A−1 and Z vector. Partial product array can be
summed to produce output in modulo (2n−1). The final calculation result of modulo
(28 ± 1) squarer can be shown in O[7 : 0].

Figure 6 is the numerical example of our proposed modulo (28 +1) squarer, taking A−1

equal to 242 as example, using modified booth encoding schemes, the corresponding first
row 001 to obtain pp0 = 11110010, second row 000 to obtain pp1 = 11111100, third row
101 to obtain pp2 = 11011111 and fourth row 100 to obtain pp3 = 11000000. A∗

−1 is the
inversion of A−1, and Z is obtained from booth encoder which is shown in Figure 2 and
Figure 5. It should be noted that the value of the 1st, 3rd, 5th and 7th bits in Z will be
set to zero. Therefore, we can easily obtain the result of 2422 modulo (28 + 1) squarer to
be 225 using carry save adder. Figure 7 is the numerical example of our proposed modulo
(28 − 1) squarer. The mathematical procedure is using carry save adder for each partial
product (PP).

4. FPGA Hardware Implementation. We have designed our proposed multifunction
modulo (2n±1) squarer with Xilinx Spartan 3E FPGA. Since the hardware of our proposed
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Figure 7. Numerical example of our proposed 2422 modulo (28 − 1) squarer

Table 1. Area/delay comparison of the proposed work compared with
individual squarers (The hardware is implemented using Xilinx Spartan 3E
FPGA)

Items
Proposed modulo Proposed modulo Proposed modulo
(2n − 1) squarer (2n + 1) squarer (2n ± 1) squarer

n 8 16 8 16 8 16
Delay time (ns) 18.557 20.594 17.957 21.972 24.774 24.477

Area (LUT) 103 428 112 446 163 466

Table 2. Area savings of the proposed work compared with combined
squarer (The hardware is implemented using Xilinx Spartan 3E FPGA)

Items
Combined proposed modulo (2n − 1) Proposed modulo

and modulo (2n + 1) squarer (2n ± 1) squarer
n 8 16 8 16

Area (LUT) 215 874 163 466
Area savings – – 24.19% 46.68%

squarer can be set to perform two different squaring operations, which is different from
Vergos’s method [7] or other work for modulo squarer, in this paper, our proposed modulo
(2n±1) squarer design is only compared with the hardware for combined proposed modulo
(2n + 1) and proposed modulo (2n − 1) squarer, in which ‘combined’ is represented as the
combination of modulo (2n+1) and modulo (2n−1) squarer for hardware implementations.
The hardware implementation of the proposed work compared with combined proposed
modulo (2n + 1) and proposed modulo (2n − 1) squarer method is shown in Table 1 and
Table 2. The power number of n in this modulo (2n ± 1) squarer is taken 8 and 16 for
hardware implementation. In Table 1 and Table 2, we can observe that our proposed
modulo (2n ± 1) squarer could achieve area saving of 24.19% (n = 8), 46.68% (n = 16)
compared with combined modulo (2n +1) and (2n − 1) squarer using the original circuits.

5. Conclusions. In this paper, we have proposed an area-efficient multifunction RNS
modulo (2n ± 1) squarer. Using common partial product arrays and the same original
circuits, our proposed modulo (2n±1) squarer based on modified booth encoding schemes
could perform the function of both modulo (2n+1) squaring and modulo (2n−1) squaring
on the same hardware with tolerable delay. Also, our proposed work can achieve significant
24.19% and 46.68% area saving compared with the hardware summation of individual
modulo (2n + 1) squarer and modulo (2n − 1) squarer for modulo 2 based of power value
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n, n being equal to 8 and 16 respectively. Our hardware is implemented using Xilinx
Spartan 3E FPGA. Our proposed multifunction modulo (2n ± 1) squarer using modified
booth encoding scheme can be applied to many applications such as cryptography, Fermat
number transform (FNT), encryption operation and partial encryption of international
data encryption algorithm (IDEA).
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