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Abstract. Acoustic emission (AE) source detection is an important way to evaluate
incipient faults in rotating machine. This paper proposes an improved near field multiple
signal classification method (IN-MUSIC) based on recognizing the accurate AE source in
rub-impact. In order to decrease the computation complexity, the algorithm implements
the K-SVD dictionary learning for the optimal frequency components extraction. The
experiment results indicate that the improved method can accurately localize rub fault
with less computation consuming than the others. Thus, it is a helpful analysis tool for
on-line rub-impact fault diagnosis.
Keywords: Rub-impact, Acoustic emission, K-SVD, Multiple signal classification

1. Introduction. The rotor-stator rubbing is a hazard accident in rotating machinery
used in industries, and may cause dramatic damage [1]. The scratching inside rotating
machine emits acoustic energy which takes lots of information. Currently, acoustic emis-
sion (AE) technique served as a kind of non-destructive fault diagnosis method keeps the
rotating machinery at a healthy condition for maximum production.

By far, AE source localization is an effective way to recognize the rubbing fault and
further to conclude the working condition of the machinery. The conventional time differ-
ence of arrival (TDOA) algorithm was carried out by calculating the TDOA from different
sensors and then using triangulation to get the result [2-4]. Deng et al. [7] proposed gen-
eralized cross-correlation (GCC) time delay estimation of the best linear fraction Fourier
transformation domain filtering and got the improved accuracy of AE rubbing source
localization. However, the location error of these methods is sensitive to some param-
eters such as preset AE signal threshold, effective velocity, noise, dispersion and energy
attenuation during propagation process of waves [8].

Beam forming method (BF), an array signal processing method, was carried out to
record AE signals with different array manifold of sensors [6,11]. The advantages such as
simplified sensor arrangement, unobvious channel attenuation and simultaneous localiza-
tion of multiple sources can appear. Besides, in order to solve the AE essence properties
problems such as fast fading and the weak energy, Deng et al. [9] investigated rubbing
location algorithm of near-field BF based on minimum variance distortionless response
(MVDR). The results showed that BF can be a useful way to locate the fault accurately.
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Besides, the self-adaptive BF characteristic and making full use of wideband frequency
information were vital to improve the location accuracy as much as possible. However,
the large frequency components of the wideband AE signal and eigenvalue decomposition
in every sub bands must deteriorate the computation efficiency.

Compressed sensing (CS) was a recently proposed framework that long-term AE based
on structural health monitoring in the frequency domain has better sparsity [10]. In order
to alleviate the computation pressure, considering AE sparsity in frequency domain, it
is essential to record useful frequency representation (FR) while removing the redundant
information as much as possible. Thus, we propose a new approach using pre-trained
optimal dictionary for the sparsest frequency representation of the observed AE. Then
the sparse frequency served as the sub narrow bands is implemented into the following
near-field multiple signal classification method (N-MUSIC). In our novel approach, the
dictionary is adjusted with maximum incoherent to provide the sparsest frequency points
for better location accuracy and lower computation complexity.

The rest of the paper is organized as follows. In Section 2, an overview of the dictionary
learning and sparse representation algorithm was introduced. In Section 3 the proposed
improved near-field multiple signal classification (IN-MUSIC) model for AE source local-
ization is presented. In Section 4 the experimental results can be shown in detail. Finally,
we conclude this paper in Section 5.

2. Dictionary Learning Processing with K-SVD. According to the spare represen-
tation, a signal Y =

[
Y(1), . . . ,Y(M)

]
∈ RN×M , a dictionary D =

[
d(1) · · ·d(L)

]
∈ RD×L

consisting of L unit-norm atoms, and the K-sparse coding vector X =
[
X(1), . . . ,X(M)

]
∈

RL×M , K ≪ L, the signal can be described by a sparse linear combination of atoms as
Y = DX. Hence, the sparse representation problem can be presented that the approxi-
mation reconstruction error ∥Y − DX∥2 is sufficiently small and then the useful AE signal
can be well approximated by few atoms of a suitably trained dictionary [5].

Dictionary learning using the constructed dictionary can better adaptively achieve
sparse signal representations. Therefore, the dictionary learning problem subject to spar-
sity constraint on X and the unit norm constraint on D can be given as follows:

arg min
D,X

∥Y − DX∥2
F s.t.

∥∥X(i)

∥∥
0

< K, 1 ≤ i ≤ L (1)

In Equation (1), ∥ · ∥F is the Frobenius norm and X(i) is the column of X. Since the
joint optimization of D and X is non-convex, the optimal solution is difficult to calculate.
K-SVD algorithm is an iterative solver by alternating between optimizing the coding and
the dictionary [12]. The two steps of K-SVD are as follows.

Coding update: The orthogonal matching pursuit (OMP) algorithm is used for sparse
coding for its predefining the sparsity and its good compromise between complexity and
performance. For each column X(i) with some small value σ, it can be calculated by:

arg min
∥∥X(i)

∥∥
0

s.t.
∥∥Y(i) − DX(i)

∥∥
2
≤ σ, 1 ≤ i ≤ L (2)

Dictionary update: For each atom d(l) is isolated by rewriting the term ∥Y − DX∥2
F :

∥Y − DX∥2
F =

∥∥∥∥∥
(

Y −
L∑

j=1

djx
T
j

)∥∥∥∥∥
2

F

=

∥∥∥∥∥
(

Y −
∑
j ̸=k

djx
T
j

)
− dkx

T
k

∥∥∥∥∥
2

F

=
∥∥Ek − dkx

T
k

∥∥2

F

(3)

where xT
j stands for the jth row of X. The dictionary can be updated by min

∥∥Ek−dkx
T
k

∥∥2

F
,

where the singular value decomposition (SVD) method is involved to compute the update
d(i) as the first column of U and X(i) as Σ1,1 times the first row of VT .

Ek = UΣVT (4)
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3. Proposed Method for Sound Source Localization.

3.1. Experiment. The test table of the rotary machine rubbing fault localization was
carried out in Figure 1. Four AE sensors were arranged in a line at the end of the arch
case made by 10mm thick, steel plate. The reference coordinate was placed in the left
of the linear sensor array and the aperture array was 50mm. In the test, the rubbing
screw rubbed the rotor at preset position, and the AE acquisition system made by PAC
Corporation, recorded test data at the sampling frequency 1MHz, duration time 5kms
and with 60dB pre-amplifier to obtain optimal AE records.

Figure 1. Experimental setup of the rotary machine

3.2. K-SVD-based feature extraction method. The wideband AE signal received at
the sensor array should be decomposed into N narrow sub-bands according to frequency
components using N sample points discrete Fourier transform (DFT). Considering the
conjugate symmetry, the expression of the nth frequency components is described by:

S(fk) =
N−1∑
n=0

s(n)e−j
2πfkn

N

fk = (n − 1)/N where n = 1, 2, . . . , N/2 (5)

The sparse AE coding in frequency domain S(fk) can be gotten by using the over
complete basis FFT. In our K-SVD-based feature extraction method in Algorithm 1, the
atoms in the dictionary can be updated for the major components representations of AE
signal in frequency domain. Thus, the irrelevant background noise and some interferences
can be filtered away and the following localization computation pressure can be obviously
reduced by using less frequency bins.

Algorithm 1: K-SVD

Input : Training signal Y ∈ RN×M , initial dictionary D0 ∈ RD×L, target co-rank
N-K and number of iterations I

Output: Dictionary D and signal set X minimizing

1. Initialization: Set D := D0

2. Sparse coding stage: use OMP algorithm to compute the representation vector
x(i) for each signal Y(i) by approximating the solution of

arg min
X

∥Y − DX∥2
F s.t.

∥∥X(i)

∥∥
0

< K, 1 ≤ i ≤ L

3. Codebook update stage: define the group of examples that use this atom,
ωk =

{
i|1 ≤ i ≤ K, xk

T (i) ̸= 0
}

4. Compute the overall representation error matrix, ER
k , by min

dk,xk
R

∥∥ER
k − dkx

k
R

∥∥2

F

5. Apply SVD decomposition ER
k = U∆VT

6. Update dictionary column dk and the coefficient vector xk
R
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Figure 2. Illustration of nearfield localization model

3.3. Localization via frequency sparsity. The definition of near field source as shown
in Figure 2, a linear sensor array with m elements is arranged on the structure. Source
1 and source 2 are preset AE sources respectively. The output of these incident spherical
waves can be illustrated by Equation (6), where p is the number of the sources p < m,
xm(t) is the records from the mth sensor, a(rp, θp) is the direction and distance vector
from reference sensors to AE source; furthermore, rp1 and θp1 are the distance and the
angle of arrival from the pth AE source to the referenced sensor separately, and rpm is the
distance from the pth AE source to the mth sensor, and f is the signal frequency.

τm =

√
r2

p1 + (m − 1)2d2 − 2r1(m − 1)d cos θp1 − rp1

c
a(rp, θp) = exp[j2πfτm]

xm(t) = a(rp, θp)sm(t) + em(t)

(6)

Then the M group received wideband signal in the time domain are taken N0-point
DFT at discrete frequency points fj (j = 1, 2, . . . , J) to form several sub-bands, and the
each sub-band output X(fj) is as follows:

X(fj) = A(r,θ, fj)S(fj) + N(fj) (7)

where:
X(fj) = [x1(fj), x2(fj), . . . , xm(fj)]

T

A(r, θ, fj) = [a1(r1,θ1, fj), a2(r2, θ2, fj), . . . , am(rp,θp, fj)]
T

S(fj) = [s1(fj), s2(fj), . . . , sp(fj)]
T

N(fj) = [n1(fj), n2(fj), . . . , nm(fj)]
T

Here, X(fj), S(fj) and N(fj) are the DFT transformations of the observed signal, de-
noising signal and noise vectors, and A(r,θ, fj) is m × p matrix location vectors with p
full-rank. Then the covariance matirix under this frequency is given by:

R(fj) = X(fj)X
H(fj) (8)

As shown in Figure 3(a), the one AE event recorded the entire rubbing fault in time
domain with 5120 points. The record is mapped into 8192-points FFT in Figure 3(b).
The energy spread over all of the frequency domain. In the experiment, the parameter
are set as: 853 items training data, 100 items testing data, DCT dictionary. As the result
the 1000-sparsity, the obviously emerged major energy stands at the non-zero frequency
bins in Figure 3(c). As the smaller K is, the less quantity of non-zero frequency bins can
be and the stronger energy components can be kept in Figure 3(d).

Near-field multiple signal classification algorithm (N-MUSIC) in Equation (9) divides
the covariance matrix Rss(fj) into signal subspace and noise subspace using eigen decom-
position approach, where the maximum eigenvector USX and eigenvalue ΣSX correspond
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(a) (b)

(c) (d)

Figure 3. The observed AE signal at reference sensor: (a) the signal in
time domain; (b) the signal in frequency domain; (c) the 1000-sparsity in
frequency domain; (d) the 200-sparsity in frequency domain

to the signal subspace and the USN, and ΣSX mean the maximum eigenvector and eigen-
value of noise subspace [11].

Rss(fj) = USX(fj)ΣSX(fj)U
H
SX(fj) + USN(fj)ΣSN(fj)U

H
SN(fj) (9)

Based on the condition, the signal subspace orthogonal with noise subspace. Then the
multiple signal classification spectrum is presented by:

P(r, θ, fj) =
1

aH(r,θ, fj)RSN(fj)a(r,θ, fj)
(10)

As the parameters θ and r updated constantly, the spectrum peak is the result to
locate AE source. However, the localization results can hardly be unique in accordance
with different frequency components. It is difficult to find the exact solutions from these
scatters. The K-means classifier can be applied to divide these scatters and find the final
solution of the AE source localization.

4. Simulations and Evaluations. Figure 4 shows the localization results based on the
N-MUSIC, IN-MUSIC, TDOA, and DTB methods. Three events at each preset source
location are required to provide an average result and allow erroneous data to be away.

(a) (b)

Figure 4. Comparison with the IN-MUSIC, N-MUSIC, DTOA, and DTB
methods: (a) localization results (mm); (b) computation time (s)
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From the results in Figure 4(a), the IN-MUSIC and N-MUSIC methods can approximate
to the real AE source as much accurately as possible, since the covariance matrix eigen
decomposition at each frequency bins makes the best use of sub-bands information and
some noise effects are filtered away. Besides, the computational complexity of IN-MUSIC
is superior to N-MUSIC since the K-SVD reduces the quantity of non-zero frequency bins
so as to the eigen decomposition times. Therefore, considering these factors, the proposed
IN-MUSIC method is a useful approach to monitor the sole rubbing fault source in rotary
machine.

5. Conclusions. This paper proposes a novel nearfield MUSIC algorithm into detecting
AE source in rotor rubbing. The superiorities of this algorithm are the optimal sparse
frequency components extraction using K-SVD dictionary learning method for the follow-
ing N-MUSIC algorithm for improved localization accuracy and computation efficiency.
The experiment results show that IN-MUSIC algorithm can be considered as the best
candidate for AE source localization methodology to be utilized for the fatigue location
diagnosis of rotor rubbing in rotary machine. Further work aims to complete the worka-
bility of this method for detection of multi-sources in rubbing and impacting.
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