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Abstract. An adaptive fuzzy output-feedback control approach for a class of multi-
input and multi-output (MIMO) nonlinear systems is proposed by using the backstepping
technology, which employs fuzzy logic systems (FLSs) to approximate the unknown non-
linearity. A state observer is first designed to estimate the unmeasured state variables.
The robustness of the proposed controller is established by using the Lyapunov stability
theory. Theoretical analysis shows that all signals in the closed-loop system can be guar-
anteed semi-global uniform ultimate boundedness (SGUUB). At last simulation results
are presented to validate the effectiveness of the analysis.
Keywords: Adaptive control, Backstepping, Fuzzy output-feedback control

1. Introduction. The adaptive backstepping approach has been the cornerstone of non-
linear systems control for the last two decades. Lots of significant research results have
been reported. However, earlier works have a main limitation which usually require
some prior information. As an alternative, further research has been carried out on
approximation-based adaptive neural or fuzzy control for nonlinear systems. Recently, the
adaptive backstepping control based on fuzzy or neural approximation has been developed
greatly. By combining Lyapunov stability theory and NNs/FLSs, the adaptive backstep-
ping design has been extensively applied to more broader fields. The works in [1, 2]
proposed adaptive neural or fuzzy control schemes for the single-input and single-output
(SISO) nonlinear systems. The problems of stabilization or tracing control for MIMO non-
linear systems based on adaptive neural/fuzzy control technique are discussed in [3, 4].
These results are further extended to stochastic nonlinear systems [5, 6] and discrete-
time systems [7]. Additionally, observer-based adaptive fuzzy/neural output feedback
control approaches are proposed for SISO/MIMO systems by designing state observers in
[8, 9, 10]. By the proposed output-feedback controllers, the assumption that the states
are available is removed. A key question in these observer-based control schemes is the
analysis of the observation error dynamic systems, i.e., how to deal with the term eT Pe
is critical, where e is the observation error and P is a positive definite matrix. Most
scholars’ processing methods are based on nonlinear matrix inequalities, which usually
include ||P || and are difficult to solve. Just like in [8], in order to achieve the stability of
error dynamics, two positive definite matrixes Q and P are needed and the inequalities
q0 = λmin(Q)−(1+2||P ||2b)−1 and PA0+AT

0 P +Q < 0 must hold, where A0 is defined as
in (3). However, such matrixes Q and P usually are hard to find because of nonlinearity.

Motivated by the aforementioned works and considering that most systems are mul-
tivariable in nature, an adaptive fuzzy output-feedback control is discussed for a class
of nonlinear MIMO systems. A state observer is designed to estimate the unmeasured
states. An adaptive fuzzy output-feedback controller is systematically developed by com-
bining adaptive backstepping technique and FLSs. All signals in the closed-loop system
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are guaranteed SGUUB. The main contribution of this note is that the stability of the
observation error system depends on a set of linear matrix inequalities (LMIs), rather
than nonlinear matrix inequalities. This greatly reduces the algorithm design’s difficulty,
raises the counting yield and makes the simulation more easier to implement. The control
theory proposed in this paper should find more applications in a wide variety of problems.

The rest of this paper is organized as follows. Problem statement and preliminaries are
proposed in Section 2. The backstepping design procedure and main results are presented
in Sections 3 and 4. Simulation results are given in Section 5. At last, concluding remarks
are proposed in Section 6.

2. Problem Statement and Preliminaries. Consider a class of uncertain MIMO non-
linear systems in strict-feedback form with N subsystems. The ith (i = 1, 2, . . . , N)
subsystem is in the following form:

ẋi,j = fi,j (x̄i,j) + xi,j+1, 1 ≤ j ≤ ni − 1,

ẋi,ni
= fi,ni

(x) + ui,

yi = xi,1

(1)

where x̄i,j = [xi,1, xi,2, . . . , xi,j]
T ∈ Rj, (i = 1, . . . , N ; j = 1, . . . , ni) is the state vector

for the first j differential equation of the ith subsystem. And x =
[
xT

1 , . . . , xT
N

]T
with

xi = [xi,1, . . . , xi,ni
]T ∈ Rni are the whole states. ui ∈ R and yi ∈ R denote the control

input and output variables of the ith nonlinear subsystem, respectively. fi,j (x̄i,j)s are
the unknown smooth nonlinear functions. In this paper, it is assumed that the variable
yi = xi,1 is measured directly only.

Our control objective is to design an observer-based adaptive fuzzy controller to guar-
antee all the signals in the resulting closed-loop system are SGUUB and the observer
errors are as small as possible. To facilitate the control design, the following assumption
will be used in the subsequent developments.

Assumption 2.1. For the system function fi,j(·) there exist known constants apq, apq

such that

apq ≤
∂fi,j

∂xm,n

≤ apq, 1 ≤ i,m ≤ N, 1 ≤ j ≤ ni, 1 ≤ n ≤ nm,

where ni and nm stand for the number of state variables in the ith and jth subsystems,
respectively. p =

∑i−1
k=0 nk + j and p =

∑m−1
k=0 nk + n with n0 = 0.

Remark 2.1. Since fi,j(x) =
[

∂fi,j

∂x1,1
, . . . ,

∂fi,j

∂xN,nN

]
x. By Assumption 2.1, there exist con-

stants hi,j > 0 such that |fi,j(x)| ≤ hi,j||x||. This implies that the monotonically increasing
function ρi,j(w) = hi,jw is the bounding function of fi,j(·) with w ∈ R.

3. Fuzzy State Observer Design. Because the state vectors x̄i,j cannot be measured
directly, a state observer should be established as:{

˙̂xi,j = x̂i,j+1 + li,j
(
yi − x̂i,1

)
, 1 ≤ i ≤ N, 1 ≤ j ≤ ni − 1,

˙̂xi,ni
= ui + li,ni

(
yi − x̂i,1

) (2)

where x̂i,j is the estimation of xi,j, and li,1, . . . , li,ni
are optional negative constants such

that the polynomial p(s) = sni + li,1s
ni−1 + . . . + li,ni−1s + li,ni

is Hurwitz. Define the
estimation error as ei,j = xi,j − x̂i,j. From (1) and (2) the observer error equation is given
as:

ė = A0e + F (x) (3)
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where F (x) =
[
F1(x)T , . . . , FN(x)T

]T
, with Fi(x) =

[
fi,1(xi,1), . . . , fi,ni

(x)
]T

. And e =[
eT
1 , . . . , eT

N

]T
, with ei =

[
ei,1, . . . , ei,ni

]T
. A0 = diag[A1, . . . , AN ], with

Ai =

[
Lni−1 Ini−1

−li,ni
0

]
, Lni−1 =

[
− li,1, . . . ,−li,ni−1

]T
, 1 ≤ i ≤ N.

Consider the following Lyapunov candidate Ve = eT Pe for (3). Its time derivative can
be written as:

V̇e = eT
(
PA0 + AT

0 P
)
e + 2eT P (F (x) − F (x̂)) + 2eT PF (x̂) (4)

Additionally, with the fact P > 0, the following inequality holds

2eT P (F (x) − F (x̂)) = 2eT P
∂F

∂x
e ≤ eT

[
P

∂F

∂x
+

(
∂F

∂x

)T

P

]
e (5)

where ∂F
∂x

=
[

∂fi,j

∂xm,n

]
is a Jacobian matrix of g rows and g columns, with g =

∑N
i=1 ni.

According to Assumption 2.1, every nonzero element in the Jacobian matrix has its own
upper and lower bounds. Namely, there exists a function 0 ≤ µpq(t) ≤ 1 such that
∂fi,j

∂xm,n
= µpqapq + (1 − µpq)āpq. Thus, ∂F

∂x
can be reformulated as the following form:

∂F

∂x
=

g∑
p=1

g∑
q=1

[
µpqF pq + (1 − µpq)F pq

]
, 0 < αpq < 1 (6)

where F pq and F pq are constant matrixes and they have only one nonzero element apq

and āpq at their pth row and qth column, respectively. Because of Jacobian matrix ∂F
∂x

being time-varying, it is difficult for us to complete the stability analysis and controller
design. In order to overcome this difficulty, a group of linear matrix inequalities (LMIs)
is applied to subsequent procedures. Furthermore, form Remark 1 and Lemma 2 in [11],
one can get:

2eT PF (x̂) ≤ ε0e
T e + c

(
N∑

i=1

ni∑
j=1

|zi,j|2ϕ2
i,j

(
θ̂i,j

))
(7)

with c = gc0 and c0 = ε−1
0 ∥P 2∥

∑ni−1
j=1 h2

i,j.

Consequently, substituting (5) and (7) into (4) gets

V̇e ≤ eT

(
PA0 + AT

0 P + P
∂F

∂x
+

(
∂F

∂x

)T

P + ε0I

)
e + c

(
N∑

i=1

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

))
(8)

Remark 3.1. The last term at the right side of (8) can be counteracted in the subsequent
procedures. And the performance of error dynamics can compensate for the effect of e in
the other terms. This treatment method is different from the traditional way in [8, 9].

4. Adaptive Fuzzy Control Design and Stability Analysis. According to the ith
subsystems described by (1), the adaptive fuzzy backstepping output-feedback control
design is based on the change of coordinates:

zi,j = x̂i,j − αi,j−1, i = 1, . . . , N ; j = 1, . . . , ni (9)

where αi,0 = 0, αi,j is the virtual control signal, and when j = ni, αi,ni
is the actual

control input signal ui(t). The control signal can be constructed as:

αi,j = − 1

2a2
i,j

zi,j θ̂i,jSi,j(Zi,j)
T Si,j(Zi,j) −

1

2
zi,j − ki,jzi,j (10)
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where ki,j and ai,j are positive design parameters. Si,j(Zi,j) is the basis function vector

with Zi,j =
[
x̂i,1, . . . , x̂i,j, θ̂i,1, . . . , θ̂i,j

]T
. θ̂i,j, which will be defined later, is the estimation

of an unknown constant θi,j, and the evaluated error is θ̃i,j = θi,j − θ̂i,j. Its adaptive law
is given as follows:

˙̂
θi,j =

ri,j

2a2
i,j

z2
i,jS

T
i,j(Zi,j)Si,j(Zi) − σi,j θ̂i,j (11)

where ri,j and σi,j are positive design parameters.

Remark 4.1. It is apparent that (11) means that for any initial condition θ̂i,j(t0) ≥ 0,

the solution θ̂i,j(t) ≥ 0 holds for t ≥ t0. Thus, throughout this paper, it is assumed that

θ̂i,j(t) ≥ 0.

Consider the Lyapunov function candidate for the ith subsystem:

Vi = Vzi + Vθi =
1

2

ni∑
j=1

z2
i,j +

ni∑
j=1

1

2ri,j

θ̃2
i,j

Next, the time derivative of Vzi = 1
2

∑ni

j=1 z2
i,j is calculated as:

V̇zi =

ni∑
j=1

zi,j żi,j =

ni−1∑
j=1

zi,j

(
αi,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

x̂i,k+1 −
j−1∑
k=1

∂αi,j−1

∂θ̂i,k

˙̂
θi,k

)

+

ni−1∑
j=1

zi,j

(
li,jei,1 −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,kei,1

)
+

ni−1∑
j=1

zi,jzi,j+1

+zi,ni
(ui − α̇ni−1 + li,ni

ei,1) (12)

The completion of squares is used to handle the term zi,j

(
li,jei,1 −

∑j−1
k=1

∂αi,j−1

∂x̂i,k
li,kei,1

)
in (12) as follows:

zi,j

(
li,jei,1 −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,kei,1

)
≤ 1

2βi,j

z2
i,j

(
li,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k

)2

+
1

2
βi,je

2
i,1 (13)

By this way, the effect of the first term at the right side of Equation (13) can be
counteracted directly by αi. The performance of error can compensate for the effect of
the second one. Now, substituting inequality (13) into (12) and defining functions f̄i,j(zi,j)
as

f̄i,j(Zi,j) = −
j−1∑
k=1

∂αi,j−1

∂x̂i,k

x̂i,k+1 −
j−1∑
k=1

∂αi,j−1

∂θ̂i,k

˙̂
θi,k +

1

2βi,j

zi,j

(
j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k − li,j

)2

+zi,j−1 + czi,jϕ
2
i,j

(
θ̂i,j

)
, 1 ≤ j ≤ ni − 1

f̄i,ni

(
Zi,ni

)
= −α̇i,ni−1 + li,ni

ei,1 + zi,ni−1 + czi,ni
ϕ2

i,ni

(
θ̂i,ni

)
then, Equation (12) can be rewritten as:

V̇zi ≤
ni∑

j=1

zi,j

(
αi,j + f̄i,j(zi,j)

)
+

ni−1∑
j=1

1

2βi,j

e2
i,1 − c

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

)
(14)

Because these functions f̄i,j(zi,j)s are unknown, they cannot be directly used to design
controllers. We should use FLSs to approximate them. In light of the theory in [12], for
any given εi,j > 0, there exists an FLS W T

i,jSi,j(Zi,j) such that

f̄i,j(Zi,j) = W T
i,jSi,j(Zi,j) + δi,j(Zi,j)
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where δi,j ≤ εi,j denotes the approximation error.
Applying completion of squares again gets

zi,j f̄i,j ≤
1

2a2
i,j

z2
i,jθi,jS

T
i,jSi,j +

1

2
a2

i,j +
1

2
z2

i,j +
1

2
ε2

i,j, 1 ≤ i ≤ N, 1 ≤ j ≤ ni (15)

where the unknown constant θi,j = ∥Wi,j∥2. Substituting (10) and (15) into (14) obtains:

V̇zi ≤ −
ni∑

j=1

ki,jz
2
i,j +

ni∑
j=1

1

2a2
i,j

z2
i,j θ̃i,jS

T
i,jSi,j +

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
+

ni−1∑
j=1

1

2
βi,je

2
i,1 − c

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

) (16)

Consider the whole Lyapunov function candidate as V = Ve +
∑N

i=1(Vzi +Vθi). Noticing

V̇θi =
∑ni

j=1
−1
ri,j

θ̃i,j
˙̂
θi,j and taking (8) and (16) into account, one has

V̇ ≤ eT

[
PA0 + AT

0 P + P
∂F

∂x
+

(
∂F

∂x

)T

P + (ε0I + β)

]
e −

N∑
i=1

ni∑
j=1

ki,jz
2
i,j

+
N∑

i=1

ni∑
j=1

θ̃i,j

ri,j

(
ri,j

2a2
i,j

z2
i,jS

T
i,jSi,j − ˙̂

θi,j

)
+

N∑
i=1

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
(17)

where β = diag
[∑N

i=1

∑ni−1
j=1

1
2
βi,j, 0, . . . , 0

]
.

Now, we can summarize our main results in the following theorem.

Theorem 4.1. Consider the nonlinear MIMO system (1) under Assumption 2.1. If there
exists a definitive positive matrix P , it can make the following inequality true

PA0 + AT
0 P + ε0I + β + PFpq + F T

pqP < 0, 1 ≤ p, q ≤ g (18)

where Fpq is a constant matrix whose element at the pth row and the qth column is āpq

or apq and others are zero. Then the controller (10), the fuzzy state observer (2) and the
adaptive law (11) can guarantee all the signals in closed-loop system are SGUUB and the

error signals ei,j, zi,j, and θ̃i,j eventually converge to a small enough neighborhood around
the origin.

Proof: According to inequality (7) and Lemma 3 in [13], the following inequity

PA0 + AT
0 P + P

∂F

∂x
+

(
∂F

∂x

)T

P + ε0I + β < 0, (19)

is equivalent to a set of linear matrix inequalities as (18) described. Next, using θ̃θ̂ ≤
−1

2
θ̃2 + 1

2
θ2 and (11), we can obtain:

V̇ ≤ eT

[
PA0 + AT

0 P + P
∂F

∂x
+

(
∂F

∂x

)T

P + (ε0I + β)

]
e −

N∑
i=1

ni∑
j=1

ki,jz
2
i,j

−
N∑

i=1

ni∑
j=1

σi,j

2ri,j

θ̃i,j2 +
N∑

i=1

ni∑
j=1

σi,j

2ri,j

θ2
i,j +

N∑
i=1

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
(20)

According to inequalities (19) and (18), there exists a constant α > 0 such that

PA0 + AT
0 P + PFpq + F T

pqP + ε0I + β < −αI
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which is equivalent to

PA0 + AT
0 P + P

∂F

∂x
+

(
∂F

∂x

)T

P + ε0I + β < −αeT e ≤ − α

λM(P )
eT Pe

where λM(P ) is the maximal eigenvalue of matrix P .
Now let

a0 = min

{
α

λM(P )
, 2ki,j, σi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ ni

}
b0 =

N∑
i=1

ni∑
j=1

[
1

2

(
a2

i,j + ε2
i,j

)
+

σi,j

2ri,j

θ2
i,j

]
and then (20) can be rewritten as

V̇ ≤ −a0V + b0 (21)

Therefore, all the signals in the closed-loop system are SGUUB. The proof is completed.

5. Simulation Example.

Example 5.1. Consider the following MIMO systems transformed from [14] with i = 1, 2:
ẋi,1 = xi,2

ẋi,2 =
ui

Ji

+ fi,2(x)

yi = xi,1

where f1,2 = ((m1gr/J1) − (Kr2/4J1)) sin(x1,1), f2,2 = ((m2gr/J2) − (Kr2/4J2)) sin(x2,1),
and J1 = 5, J2 = 6.25, m1 = 2, m2 = 2, 5, K = 100, r = 0.5, g = 9.81. By our method,
choosing ε0 = 0.01, β = 0.1I, and for given Fpq, solving LMIs (18) one can get l1,1 = 2,
l1,2 = 4.5, l2,1 = 2.5, l2,2 = 7 and obtain P = diag[P1, P2], where

P1 =

[
16.4 −5.1
−5.1 3.3

]
, P2 =

[
16.4 −4.1
−4.1 1.9

]
For i = 1, 2 and j = 1, 2, the design parameters are set as ki,j = 10, ai,j = 0.5, σi,j = 1,
ri,j = 7.5, and the initial conditions are chosen as, x1,j(0) = 0.2, x2,j(0) = 0.1. The
other initial conditions are chosen as zeros. In the simulation, FLSs W T

i,jSi,j(·)s contain
14 nodes and the widths of the Gaussian function are equal to two.
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Figure 1. x1,1 and x̂1,1
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Figure 2. x1,2 and x̂1,2
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Figure 3. x2,1 and x̂2,1
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Figure 4. x2,2 and x̂2,2
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Figure 5. θ̂i,j (i, j = 1, 2)
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Figure 6. u1 and u2

The simulation results are shown in Figures 1-6. From the simulation results, it can be
clearly shown that even though the nonlinear systems contain uncertain nonlinearities,
the proposed adaptive fuzzy output-feedback controllers can guarantee the stability of the
control systems and the boundedness of all the signals in the system.

6. Conclusion. An adaptive fuzzy control strategy has been proposed for a class of
uncertain MIMO nonlinear system in strict-feedback form. FLSs are used to approxi-
mate the structure uncertainties and an observer is designed for state estimations. Based
on the backstepping method and the Lyapunov stability theory, the designed controller
guarantees all the closed-loop signals are SGUUB. The errors can be arbitrarily small
by choosing suitable design parameters. The main efficiency of the proposed technique
is due to a group of linear matrix inequalities. Compared with the existing method,
solving linear matrix inequalities greatly reduces the computing difficulty, and makes our
method more suitable for practical applications. Finally, computer simulations reveal the
efficiency of the proposed method and also verify the theoretical results. Moreover, it is
significant and challenging to apply the proposed method to nonlinear systems with time
delays. This is an area that we will look at and that we will explore.
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