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Abstract. The recharging system for autonomous mobile robot is an important issue
for keeping robot in long-time functionality. Recharging is necessary before the power has
exhausted. In this paper, we propose a sensory fusion method to guide the 4WD mecanum
wheel robot while performing the docking process for recharging. Firstly, an artificial
pattern is employed as a visual cue on the charging station in order to be recognized and
estimated from an RGB-D camera. At the same time, the 2D range data acquired by
a laser ranger are modeled as line segments in the environment. Then the geometrical
relationship between the robot and the docking station can be estimated by using sensory
fusion methods from laser ranger and RGB-D camera. Finally, apply the kinematic
model of 4WD mecanum wheel robot with a control rule, and a successful demonstration
of mobile robot autonomous docking is shown in the experimental results.
Keywords: Autonomous recharging, Sensory fusion

1. Introduction. Mobile robots will be widely employed in many applications, for exam-
ple, factory automation, dangerous environments, office, hospitals, surgery, entertainment,
space exploration, farmland, military, and security system. In addition, the robot must
be capable of long-term autonomy. So how to guide the robot towards the recharging
station and dock into the station is important issues for autonomous mobile development.
The first work on robot recharging is made by Walter [1]. They developed the first au-
tonomous recharging mobile robots and employed light to find a hut, which contains a
light beacon and a battery recharger. Roufas et al. [2] used four IR LED emitters and
one IR receiver to implement the docking.

Nowadays, the laser ranger [3] is well for environment scanning/detection on mobile
robot applications [10,11], but it is difficult to identify the recharging station from the
2D point cloud data. On the other side, the low cost RGB-D camera [4] will be useful in
visual pattern recognition and the corresponding depth value will be good for reference.
Some RGB-D camera applications are shown in [12,13]. In this work, we combine the
laser ranger and RGB-D camera to locate the docking station in the environment. And
the experimental results show the proposed fusion methods will achieve more accurate
and consistent estimations for mobile robot docking process.

This paper is organized as follows. Section 2 shows the mobile robot system develop-
ment, and describes the pattern extraction and sensory fusion methods. In Section 3, the
kinematic model of robot and the control rule of docking are presented. Finally, Section
4 shows the experimental results and Section 5 presents a concluding comment.

2. Robot System Development. The 4WD mecanum wheel robot platform and charg-
ing station are shown in Figure 1(a). The robot is designed for autonomous patrol and
delivery service in an office building. The robot is equipped with a 2D SICK laser ranger,
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(a)
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Figure 1. (a) 4WD mecanum wheel robot and charging station, (b) com-
munication of robot and recharging station via BLE 4.0

(a) (b)

Figure 2. (a) POI extraction via SIFT, (b) CU estimation for the POI’s position

and a kinect RGB-D camera for environment perception. The radio communication be-
tween charging station and mobile robot is through the Bluetooth Low Energy (BLE)
protocol which is shown in Figure 1(b).

2.1. SIFT feature extraction for pattern of interesting. In this work, the Scale
Invariant Feature Transform (SIFT) [5,6] is applied for searching the pattern of interesting
(POI) as shown in Figure 2(a). An important aspect of this approach is that it generates
large numbers of features in the local region such as location, scale, rotation, magnitude,
and orientation in order to record information of key points.

2.2. CU estimation to locate the POI. From the SIFT extraction of the image,
the additional information of point depth from the RGB-D camera can also be used.
The covariance union (CU) fusion method [7] will be applied under this situation. For
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example, given n estimations represented by estimates (Pa1
, a1) (Pa2

, a2) . . . (Pan
, an),

CU produces an estimate (Pu, u) that is guaranteed to be consistent as long as one of
the estimates (Pai

, ai) is consistent. This is achieved by guaranteeing that the estimate
(Pu, u) is consistent with respect to each of the estimates. The CU constraint is shown
below:

Pu ≥ Pa1
+ (u − a1)(u − a1)

T

Pu ≥ Pa2
+ (u − a2)(u − a2)

T

Pu ≥ Pa3
+ (u − a3)(u − a3)

T

...
Pu ≥ Pan

+ (u − an)(u − an)T

(1)

The CU optimization has simple linear constraints that are compatible with any generic
constrained optimization package. Figure 2(b) shows the optimal ellipsoid fusion result
of SIFT features in 3D point cloud which are projected in the x-y plane.

2.3. CI estimation fusion for recharging station. The covariance intersection (CI)
[8] is a data fusion algorithm which takes a convex combination of the means and covari-
ance in the information space. Consider two different pieces of measurement A and B from
different sources. If given the mean and variance: E{A} = a, E{B} = b, var{A, A} = Paa,
var{B, B} = Pbb, cov{A, B} = Pab. Define the estimate z as a linear combination of A

and B which is presented in the previous estimate of the same target with certain mea-
surement uncertainty. The CI approach is based on a geometric interpretation of the
Kalman filter process. The general form of the Kalman filter can be written as:

ẑ = ωaa + ωbb (2)

Pzz = ωaPaaω
T

a + ωaPabω
T

a + ωbPbaω
T

b + ωbPbbω
T

b (3)

where the weights ωa and ωb are chosen to minimize Pzz. This form reduces the conven-
tional Kalman filter if the estimates are independent (Pab = 0). The covariance ellipsoid
of CI will enclose the intersection region and the estimate is consistent. Given the upper
bounds Paa − P̄aa ≥ 0 and Pbb − P̄bb ≥ 0, the covariance intersection estimate outputs are
defined as follows:

z = Pzz

{

ωaP
−1

aa a + ωbP
−1

bb b
}

(4)

P−1

zz = ωaP
−1

aa + ωbP
−1

bb (5)

where ωa + ωb = 1, 0 ≤ ωa, ωb ≤ 1.
The parameter ω modifies the relative weights assigned to A and B. Different choices

of ω can be used to optimize the covariance estimate with respect to different performance
criteria such as minimizing the trace or the determinant of Pzz. The estimation fusion
sequences are shown as below in Figure 3.

(a) (b) (c)

Figure 3. Sensory fusion for charging station estimation: (a) feature ex-
traction, (b) covariance estimation, (c) covariance intersection result



3020 J.-F. WENG, C.-C. LAI AND K.-L. SU

3. Mecanum Wheel Robot Configuration.

3.1. Kinematic model. The mobile robot is combined with four Mecanum wheels, and
each wheel is connected to a separate motor with independent control. Depending on each
individual wheel direction and speed, the mobile platform can move forward, backward,
sideways and any other desired directions or spin [9]. The kinematic formula is described
as below:
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where Vx, Vy represent the velocity vectors of robot and ω represents the angular velocity
of robot. ω1 ∼ ω4 represent the angular velocity of the four mecanum wheels.

3.2. Control rule of docking. For the actual robot applications, the robot will navigate
to nearby charging station for preparing self-recharging. Figure 4(a) shows the robot is
searching the pattern of charging station by SIFT features. After identifying the pattern
of charging station, the estimation fusion algorithm is applied to locating the target as
shown in Figure 4(b). Figure 4(c) shows the robot will forward to the critical region as
R > R′, and Figure 4(d) shows the robot will move to the center of critical region via the
kinematic control of 4WD mecanum wheel. When robot aligns to the charging station as
shown in Figure 4(e), then robot is forward for docking with the distance threshold d as
shown in Figure 4(f) for completing docking process.

(a) (b) (c)

(d) (e) (f)

Figure 4. Docking sequences of 4WD mechanum wheel robot

4. Experiment Results. The actual demonstration is shown in Figure 5. In time stamp
1, the pattern of charging station was identified. In time stamp 2, robot is forward to the
critical region as in time stamp 4. In time stamps 5∼7, the robot aligns to the center of
charging station. In time stamp 8, robot is forward for docking and time stamp 9 shows
the docking completed.
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Figure 5. Autonomous docking of 4WD mechanum wheel robot

5. Conclusions. From the SIFT pattern comparison, we can get reliable orientation
information from the RGB-D camera, and we also apply the covariance union method
to estimating visual features with depth information. However, depth information of the
RGB-D camera is not precision for docking. On the other hand, laser ranger is easy to get
the accurate distance of an extracted object, but it is difficult to recognize the pattern in
the environment. In this work, we applied the covariance union and covariance intersection
methods to combining the advantages of these two sensors and improved the estimation
performance for target (recharging station) estimation. The actual demonstration shows
the approaches are well for mobile robot autonomous recharging.
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