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Abstract. The classical alternating direction method of multipliers (ADMM), which is
a special case of the famous proximal point algorithm, is well studied in the literature.
In this paper, we propose a new generalized ADMM for separable convex programming,
which is a modification of the classical ADMM by introducing an acceleration factor, and
includes the latter as a special case. We prove the global convergence of the proposed
method under some standard assumptions. Numerical experiments about image deblur-
ring with wavelets are included to illustrate the efficiency of the new method.
Keywords: Alternating direction method of multipliers, Convex programming, Varia-
tional inequalities, Image deblurring with wavelets

1. Introduction. Let l, n1, n2 be three positive integers, θi : Rni → R (i = 1, 2) be
closed proper convex functions (not necessarily smooth), Ai ∈ Rl×ni (i = 1, 2) be given
matrices, b ∈ Rl be a given vector, and Xi ⊆ Rni (i = 1, 2) be nonempty closed convex
sets. In this paper, we consider the linearly constrained separable convex programming
problem of the form

min {θ1(x1) + θ2(x2)|A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2} . (1)

Throughout, the solution set of (1) is assumed to be nonempty, and A1, A2 are assumed to
be full column rank matrices. Problem (1) has numerous applications, such as, statistical
learning, sparse signal/image recovery, and transportation problems.

The augmented Lagrangian function of (1) can be written as

LA(x, y, λ) = θ1(x1) + θ2(x2) − ⟨λ,A1x1 + A2x2 − b⟩ +
β

2
∥A1x1 + A2x2 − b∥2,

where λ is the Lagrange multiplier and β > 0 is a penalty parameter for the violation of the
linear constraints. Given (xk

2, λ
k), the famous alternating direction method of multipliers

(ADMM) [1] for solving (1) updates the primal and the dual variables via
xk+1

1 = argminx1∈X1

{
θ1(x1) − x⊤

1 A⊤
1 λk + β

2
∥A1x1 + A2x

k
2 − b∥2

}
,

xk+1
2 = argminx2∈X2

{
θ2(x2) − x⊤

2 A⊤
2 λk + β

2
∥A1x

k+1
1 + A2x2 − b∥2

}
,

λk+1 = λk − β
(
A1x

k+1
1 + A2x

k+1
2 − b

)
.

(2)
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Obviously, the classical ADMM solves two subproblems in (2) in the Gauss-Seidel man-
ner at each iteration, and thus the variables x1 and x2 can be solved separably in the
alternating order. This treatment is meaningful, since in many concrete applications of
(1), the subproblems in (2) are often simple enough to have closed-form solutions or can
be easily solved up to a high precision. ADMM can be viewed as an application of the
Douglas Rachford splitting method (DRSM) [2] to the dual of (1), and DRSM is in turn
a special case of the proximal point algorithm [3, 4].

Inspired by the work [6], a generalized ADMM was proposed in [5] and it generates the
new iterative (xk+1

1 , xk+1
2 , λk+1) via the following procedure:

xk+1
1 = argminx1∈X1

{
θ1(x1) − x⊤

1 A⊤
1 λk + β

2
∥A1x1 + A2x

k
2 − b∥2

}
,

xk+1
2 = argminx2∈X2

{
θ2(x2) − x⊤

2 A⊤
2 λk + β

2
∥αA1x

k+1
1

−(1 − α)(A2x
k
2 − b) + A2x2 − b∥2

}
,

λk+1 = λk − β
[
αA1x

k+1
1 − (1 − α)(A2x

k
2 − b) + A2x

k+1
2 − b

]
,

(3)

where α ∈ (0, 2) is an acceleration parameter [4].
Notice that the two subproblems related to x1 in (2) and (3) are the same. That is

to say the first subproblem of (3) is irrelevant to the acceleration parameter α. In this
paper, we propose a new generalized ADMM, whose two subproblems both incorporate
the important parameter α. More specifically, our new iterative scheme is

xk+1
1 = argminx1∈X1

{
θ1(x1) − x⊤

1 A⊤
1 λk + αβ

2
∥A1x1 + A2x

k
2 − b∥2

}
,

xk+1
2 = argminx2∈X2

{
θ2(x2) − x⊤

2 A⊤
2 λk + (2α−1)β

2
∥A1x

k+1
1 + A2x2 − b∥2

}
,

λk+1 = λk − β
[
αA1x

k+1
1 − (1 − α)(A2x

k
2 − b) + A2x

k+1
2 − b

]
.

(4)

Similar to (3), (4) also reduces to (2) when α = 1.

2. Preliminaries. In this section, we provide some preliminaries which are useful for
further discussions. In particular, we characterize problem (1) by a variational inequality
problem.

We define some auxiliary variables which will help us alleviate the notation in the
following analysis. First of all, we introduce a new vector x = (x1, x2), which is a column
vector by stacking vectors x1, x2. Similarly, we use the following notations w = (x, λ),
v = (x2, λ) and θ(x) = θ1(x1) + θ2(x2). Now, by invoking the first-order optimality
condition for convex programming, we reformulate problem (1) as the following variational
inequality problem (denoted by VI(W , F, θ)): finding a vector w∗ ∈ W such that

θ(x) − θ(x∗) + (w − w∗)⊤F (w∗) ≥ 0, ∀w ∈ W , (5)

where W = X1 ×X2 ×Rl, and

F (w) =

 −A⊤
1 λ

−A⊤
2 λ

A1x1 + A2x2 − b

 . (6)

Obviously, the just defined mapping F (w) is affine with a skew-symmetric matrix; it is
thus monotone. The solution set of (5) is denoted by W∗. Then, W∗ is nonempty under
assumption of the solution set of problem (1).

Now, let us define some matrices in order to present our analysis in a compact way. Let

M =

(
In2 0

−βA2 Il

)
(7)

and for α ∈ [1, 2), set

Q =

(
(2α − 1)βA⊤

2 A2
1−α

α
A⊤

2

−A2
1

αβ
Il

)
. (8)
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Last, we define a symmstric matrix

H =

(
2α2−2α+1

α
βA⊤

2 A2
1−α

α
A⊤

2
1−α

α
A2

1
αβ

Il

)
. (9)

The matrices M,Q, H just defined satisfy the following properties.

Lemma 2.1. The matrix H defined in (9) is positive definite (if A2 is a full column rank
matrix) for α ∈ [1, 2).

Proof: Set t = 2α2 − 2α + 1. Obviously, for all α ∈ R, t > 0. By (9), we have

H =
1

α

( √
βA⊤

2 0
0 1√

β
Il

)(
tIl (1 − α)Il

(1 − α)Il Il

)( √
βA2 0
0 1√

β
Il

)
.

Note that the matrix (
t 1 − α

1 − α 1

)
is positive definite when α ∈ [1, 2), therefore, H is also positive definite. The proof is
then complete.

Lemma 2.2. The matrices M , Q, H defined, respectively, in (7), (8), (9) have the
following relationships:

HM = Q (10)

and

Q⊤ + Q − M⊤HM ≽ α − 1

2α
M⊤HM. (11)

Proof: Elementary.

3. Algorithm and Global Convergence. In this section, we first describe our new gen-
eralized alternating direction method of multipliers (NGADMM) for VI(W , F, θ) formally,
followed by some remarks on its properties. Then, we establish its global convergence in
a contraction perspective.

Algorithm 3.1. NGADMM
Step 0. Choose the parameters α ∈ [1, 2), β > 0, the tolerance ε > 0 and the initial

iterate (x0
2, λ

0) ∈ X2 ×Rl. Set k := 0.
Step 1. Solve (4), and get the new iteration wk+1 =

(
xk+1

1 , xk+1
2 , λk+1

)
.

Step 2. Set λ̂k = λk − αβ
(
A1x

k+1
1 + A2x

k
2 − b

)
. If

max
{∥∥A2x

k
2 − A2x

k+1
2

∥∥ ,
∥∥∥λk − λ̂k

∥∥∥}
< ϵ, (12)

then stop and return an approximate solution
(
xk+1

1 , xk+1
2 , λ̂k

)
of VI(W , F, θ); else set

k := k + 1, and go to Step 1.

Remark 3.1. Obviously, if both parameters α = 1, then the classical ADMM (2) is
recovered. Therefore, in the following, we only consider the case α ∈ (1, 2).

Remark 3.2. For NGADMM, x1 is the intermediate variable, and v = (x2, λ) are the
essential variables. For this reason, we further define the notation vk =

(
xk

2, λ
k
)
, V =

X2 ×Rl,

V∗ := {v∗ = (x∗
2, λ

∗)|w∗ = (x∗
1, x

∗
2, λ

∗) ∈ W∗}.
For further analysis, we also need to define an auxiliary sequence {ŵk} as

ŵk =

 x̂k
1

x̂k
2

λ̂

 =

 xk+1
1

xk+1
2

λk − αβ(A1x
k+1
1 + A2x

k
2 − b)

 . (13)
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Lemma 3.1. For the two sequences {λk+1} and
{

λ̂k
}

generated by NGADMM, we have

λk+1 = λ̂k − β
(
A2x̂

k
2 − A2x

k
2

)
, (14)

and

λ̂k −
(

1

α
− 1

) (
λ̂k − λk

)
= λk − (2α − 1)β

(
A1x̂

k
1 + A2x

k
2 − b

)
. (15)

Proof: Elementary.
Then, by (16) and (17), we have the relationship between {vk} and {v̂k}:(

xk+1
2

λk+1

)
=

(
xk

2

λk

)
−

(
In2 0

−βA2 Il

)(
xk

2 − x̂k
2

λk − λ̂k

)
,

which can be rewritten in a compact form by using the notation of vk and v̂k:

vk+1 = vk − M
(
vk − v̂k

)
, (16)

where M is as defined in (7).
Now, we are going to prove the global convergence of the NGADMM in the analytic

framework of contraction type methods, and begin our proof by showing the stopping
criterion (7) is reasonable.

Lemma 3.2. If A2x
k
2 = A2x̂

k
2 and λk = λ̂k, then ŵk =

(
x̂k

1, x̂
k
2, λ̂

k
)

produced by NGADMM

is a solution of VI(W , F, θ).

Proof: The optimality condition of the three subproblems in (4) can be characterized
by the following variational inequality problems: for any w = (x1, x2, λ) ∈ W ,

θ1(x1) − θ1

(
x̂k

1

)
−

(
x1 − x̂k

1

)⊤ {
A⊤

1

[
λk − αβ(A1x̂

k
1 + A2x

k
2 − b)

]}
≥ 0,

θ2(x2) − θ2

(
x̂k

2

)
−

(
x2 − x̂k

2

)⊤ {
A⊤

2

[
λk − (2α − 1)β

(
A1x̂

k
1 + A2x̂

k
2 − b

)]}
≥ 0,(

λ − λ̂k
)⊤ [

αA1x̂
k
1 − (1 − α)

(
A2x

k
2 − b

)
+ A2x̂

k
2 − b −

(
λk − λk+1

)
/β

]
≥ 0.

Adding the above three inequalities and by (14), (15), we have

θ(x) − θ
(
x̂k

)
+

(
w − ŵk

)⊤
F (ŵk) +


0

(2α − 1)βA⊤
2

(
A2x̃

k
2 − A2x

k
2

)
+ (1 − α)A⊤

2

(
λ̂k − λk

)/
α

−
(
A2x̂

k
2 − A2x

k
2

)
+

(
λ̂k − λk

)/
(αβ)


 ≥ 0.

(17)

In addition, by (8) (the definition of Q), the inequality (17) can be written as

θ(x) − θ
(
x̂k

)
+

(
w − ŵk

)⊤
F

(
ŵk

)
≥

(
v − v̂k

)⊤
Q

(
vk − v̂k

)
, (18)

for any w ∈ W . Therefore, if A2x
k
2 = A2x̂

k
2 and λk = λ̂k, we have

Q(vk − v̂k) = 0.

Then, (18) reduces to

θ(x) − θ
(
x̂k

)
+

(
w − ŵk

)⊤
F

(
ŵk

)
≥ 0, ∀w ∈ W ,

which implies that ŵk is a solution of VI(W , F, θ). This completes the proof.
According to (18), the accuracy of ŵk to a solution of VI(W , F, θ) is measured by the

quantity
(
v − v̂k

)⊤
Q

(
vk − v̂k

)
.

Theorem 3.1. Let {wk} be the sequence generated by NGADMM. Then, if α > 1, the
corresponding sequence {vk} converges to a some v∞, which belongs to V∗.

Proof: Elementary.
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4. Numerical Experiments. In this section, we conduct some numerical experiments
about image deblurring with wavelets to verify the efficiency of the proposed NGADMM.
All the codes were written by Matlab 7.0 and performed on a ThinkPad computer
equipped with Windows XP, 997 MHz and 1.60 GB of memory.

Given an original image P and concatenate it into an n-vector p̄ ∈ Rn. Let D ∈ Rn×n

be the matrix representation of a distortion operator acting on the image, such as a
blurring, vignetting, inpainting or zooming operator. Let ω ∈ Rn be the noise added onto
the image. The observed image p ∈ Rn can be modeled by p = Dp̄ + ω. Let x ∈ Rd

be the vector of wavelet coefficients of the original image p̄ under a wavelet dictionary.
Let W ∈ Rn×d be the matrix of a wavelet dictionary. Then, we have p̄ = Wx. The
mathematical model of image deblurring with wavelets is

min
x∈Rd

1

2
∥DWx − p∥2 + γ∥x∥1, (19)

where ∥x∥1 :=
∑d

i=1 |xi|; γ > 0 is the regularization parameter.
Now, we show that the model (19) can be reformulated as a special case of (1). In fact,

by setting x1 = x, x2 = x, we can reformulate (19) as

min
1

2
∥DWx − p∥2 + γ∥y∥1

s.t. x − y = 0, x ∈ Rd, y ∈ Rd,

which is a special case of the abstract model (1) with the following specifications:

x1 = x, x2 = y, θ1(x1) =
1

2
∥DWx − p∥2,

θ2(x2) = γ∥y∥1, A1 = Id, A2 = −Id, b = 0.

Below, we elaborate on how to derive the closed-form solutions for the subproblems
resulted by the NGADMM.

• With the given xk
2 and λk, the x1-subproblem in (4) is

xk+1
1 = argminx1∈Rd

{
1

2
∥DWx1 − p∥2 +

αβ

2

∥∥∥∥x1 − xk
2 −

1

αβ
λk

∥∥∥∥2
}

,

which has the following closed-form solution:

xk+1
1 =

(
(DW )⊤(DW ) + αβId

)−1 (
(DW )⊤p + αβxk

2 + λk
)
.

Obviously, the closed-form solution of x1 needs to compute
(
(DW )⊤(DW ) + αβId

)−1
,

and under the periodic boundary conditions for x1, the coefficient in the above equation
can be diagonalized easily by fast Fourier transforms (FFT). Consequently, the solution
of the above equation can be accomplished by two FFTs (including one inverse FFT).

• With the updated xk+1
1 , the x2-subproblem in (4) is

xk+1
2 = argminx2∈Rd

{
γ∥x2∥1 +

(2α − 1)β

2

∥∥∥∥x2 − xk+1
1 +

λk

(2α − 1)β

∥∥∥∥2
}

,

and its closed-form solution is given by

xk+1
2 = shrink γ

(2α−1)β

(
xk+1

1 − λk

(2α − 1)β

)
,

where, for any c > 0, shrinkc(·) is defined as

shrinkc(g) := g − min{c, |g|} g

|g|
, ∀g ∈ Rn,

and (g/|g|)i should be taken as 0 if |g|i = 0.
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• Then, with the newly generated xk+1
1 and xk+1

2 , the Lagrange multiplier λ is updated
via

λk+1 = λk − β
[
αxk+1

1 + (1 − α)xk
2 − xk+1

2

]
.

In the experiment, we consider the deblurring problems with 9× 9 uniform blur kernel,
and W is a redundant Harr wavelet frame with four levels. The test image is the well-
known Cameraman image which with size 256-by-256 pixels. Accordingly, d = 2562 in
model (19). The Gaussian noise is generated from N(0, 0.5550). In the following, we set
γ = 0.0075, α = 1.2, β = 0.0075. The stop criterion for the method is∣∣objectivek+1 − objectivek

∣∣
objectivek

≤ 10−3,

where objectivek represents the objective function value at the kth iterate for the model
(19). To assess the restoration performance qualitatively, we use the error of the recon-
structed image is measured by the mean squared error (MSE) and the improved signal-
to-noise ratio (ISNR) which are defined as follows:

MSE =
∥p̄ − p̂∥2

d
, ISNR = 10log10

∥p − p̄∥2

∥p̂ − p̄∥2
,

where p̄ and p̂ are the original image and the reconstructed image, respectively. The
initial points of all the variables are set as zero vectors with corresponding dimension.

In the experiment, the number of calls to the operators D, D⊤ is 68, the number of
iterations is 33, computation times in seconds is 10.3, the MSE is 92.6 and the ISNR is 7.69
dB. Figures 1 and 2 indicate that NGADMM can recover the blurred image efficiently.

Blurred and noisy

Figure 1. Blurred and noisy image

Estimated

Figure 2. Estimated image

5. Conclusions. In this paper, we have proposed a new generalized ADMM for sep-
arable convex programming, and proved its global convergence under mild conditions.
Furthermore, its numerical efficiency is verified by the image deblurring. In the future,
we shall further study the generalized ADMM, and apply it to other domains, such as
compressive sensing, signal recovery, and machine learning.
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