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Abstract. The tracking performance limitation of networked control systems with packet
dropouts and quantization constraints is investigated in this paper. The quantization and
the packet dropouts of communication channel in the feedback channel are considered.
The tracking performance limitation is obtained by using the Youla parameterization
technique. It is shown that the tracking performance limitation depends on the non-
minimum phase zeros position, unstable poles position of a given plant, quantization
interval and packet dropouts probability. The result also shows how the quantization in-
terval and packet dropouts probability may fundamentally constrain the tracking capability
of networked control systems. A typical example is given to illustrate the theoretical re-
sults.
Keywords: Packet dropouts probability, Quantization interval, Unstable poles position,
Non-minimum phase zeros position

1. Introduction. In recent years, networked control systems (NCSs) have been found
successfully applied into various fields [1]. While NCSs bring convenience to the life, they
have also risen to new challenges due to packet dropouts, delay and quantization, and so
on. The predictive controller design of networked systems with communication delay and
data loss was studied in paper [2]. The stability problem of NCSs with packet dropouts
and time delay was studied in paper [3].

The technologies about stabilization analysis of the NCSs are now fairly mature. From
the application point of view, we should study the performance quality of NCSs. Now,
more and more scholars are paying their attentions to studying the performance quality of
NCSs. For example, the paper [4] studied discrete-time single-input linear time-invariant
performance limitation with single-to-noise ratio constraints. The tracking performance
limitation for two-channel disturbance rejection under control energy constraint was stud-
ied in paper [5]. The tracking performance limitation with communication constraint was
studied in paper [6]. The tracking performance limitation of a linear time-invariant system
with a quantized control signal was studied in paper [7].

These research results show that the tracking performance limitation of NCSs is de-
termined by plant internal structure and networked parameters, such as non-minimum
phase zeros position, and unstable poles position. At present, the study about the track-
ing performance limitation with quantization interval and packet dropouts is quite few,
and it is difficult for us to study the tracking performance limitation with multi-network
parameters. However, in NCSs, quantization interval and packet dropouts may exist con-
currently. In this paper, we study the problem of the tracking performance limitation
of NCSs with packet dropouts and quantization interval. The tracking performance ex-
pression is obtained by using the Youla parameterization technique. The result shows
that the tracking performance limitation is determined by the non-minimum phase zeros
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position, unstable poles position, quantization interval and packet dropouts probability.
This obtained result will provide a guidance on design of NCSs.

This paper is organized as follows. The problem statement is introduced in Section
2. In Section 3, we study tracking performance limitation of NCSs with packet dropouts
and quantization interval as in Figure 1. An example is given to illustrate the theoretical
results in Section 4. The paper conclusions are presented in Section 5.

2. Problem Statement. The symbol used throughout this paper is described as follows.
For any vector z, we devote its conjugate transpose by z̄. Let the open right-half and
open left-half plans be denoted by C+ := {s : Re(s) > 0} and C− := {s : Re(s) < 0}
[8], respectively. H2 and H⊥

2 are subspaces containing functions that are analytic in C+

and C−, respectively. Finally, RH∞ denotes the set of all stable, proper, rational transfer
functions.

We consider NCSs with packet dropouts and quantization, as depicted in Figure 1. The
stochastic reference signal r is a Brownian motion process, and the parameter dr denotes
whether or not a packet is dropped:

dr =

{
1, if the system output is successfully transmitted to the controller,
0, if the system output is not successfully transmitted to the controller

with a probability distribution given by P{dr = 0} = q, P{dr = 1} = 1 − q, where q is
the packet dropouts probability.
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Figure 1. Networked control systems with packet dropouts

Figure 1 represented the model of networked control systems with quantization and data
dropouts constraints, where data dropouts exist in the feedback path and quantization
exist in the forward path. In Figure 1, G denotes the plant model. The signals r, y, v and
u represent the reference input, the system output, the communication channel input and
the communication channel output, respectively. The uniform quantizer is used in this
paper, and u = v + n, where n denotes quantization error and obeys uniform distribution
in
[
−∆

2
, ∆

2

]
, and ∆ represented the quantitative interval. Then, we assume the mean and

variance of reference input r are zero and θ2, respectively.
It follows from Figure 1 that

v = Kr − Kdry, u = v + n, y = Gu (1)

According to (1), we can obtain the tracking error of the NCS is

e = r − y =

(
1 − KG

1 + KGdr

)
r − G

1 + KGdr

n

According to [8], we can obtain

Se(jω) =

(
1 − K(s)G(s)

1 + drK(s)G(s)

)
Sre(jω) +

G(s)

1 + drK(s)G(s)
Sne(jω)
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Then we have

σ2
e =

∥∥∥∥1 − K(s)G(s)

1 + (1 − q)K(s)G(s)

∥∥∥∥2

2

θ2 +
∆2

12

∥∥∥∥ G(s)

1 + (1 − q)K(s)G(s)

∥∥∥∥2

2

Denote J := σ2
e , and the performance limitation is measured by the possible minimal

tracking error achievable by all possible linear stabilizing controllers (denoted by K),
determined as

J∗ = inf
K∈K

∥∥∥∥1 − K(s)G(s)

1 + (1 − q)K(s)G(s)

∥∥∥∥2

2

θ2 +
∆2

12
inf

K∈K

∥∥∥∥ G(s)

1 + (1 − q)K(s)G(s)

∥∥∥∥2

2

(2)

For the rational transfer function (1− q)G, consider a coprime factorization of (1− q)G
as

(1 − q)G =
N

M
(3)

where M, N ∈ RH∞ and satisfy the Bezout identity

MX − NY = 1 (4)

where X,Y ∈ RH∞. Then a stabilizing compensator K can be characterized by the
Youla parameterization [9]

K :=

{
K : K = −(Y − MQ)

X − NQ
,Q ∈ RH∞

}
(5)

It is well known that a non-minimum phase transfer function can be factorized as a
minimum phase part and an all-pass factor [10]

N = (1 − q)LzNn, M = BP Mm (6)

where Lz and Bp are the all-pass factors, and Nn and Mm are the minimum phase Parts.
Lz includes all the right-half plane zeros of the plant zi ∈ C+, i = 1, 2, . . . , n, Bp includes
all the right-half plane poles of the plant pj ∈ C+, j = 1, 2, . . . , m. We consider the
coprime factorization of Lz(s) and Bp(s) respectively as

Lz(s) =
n

Π
i=1

s − zi

s + z̄i

Bp(s) =
m

Π
j=1

s − pj

s + p̄j

(7)

3. Performance Limitation of Networked Control Systems. According to (2), (3),
(4) and (5), we can obtain

J∗ ≥ inf
Q∈RH∞

∥∥∥∥1 +
1

1 − q
N(Y − MQ)

∥∥∥∥2

2

θ2 +
∆2

12
inf

Q∈RH∞

∥∥∥∥− 1

1 − q
N(X − NQ)

∥∥∥∥2

2

(8)

It is clear that in order to obtain the minimum J∗, Q must be appropriately selected.

Theorem 3.1. If the plant is factorized as in (3) and (6), then the tracking performance
limitation is given by

J∗ ≥ J∗
1θ2 +

∆2

12
J∗

2 (9)

where

J∗
1 =

n∑
i=1

2Re(zi)+
n∑

i,j∈N

4Re(pj)Re(pi)

(p̄j + pi) b̄jbi

[(
1 − 1

1 − q
L−1

z (pj)

)H (
1 − 1

1 − q
L−1

z (pj)

)]

J∗
2 =

n∑
i,j∈N

4Re(zj)Re(zi)

(z̄i + zj)āiaj

[
(Nn(zi)X(zi))

H(Nn(zi)X(zi))
]

bj = Π
i∈N
i ̸=j

pj − pi

pj + p̄i

ai = Π
j∈N
j ̸=i

zi − zj

zi + z̄j
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Proof: From (8), we denote

J1
∗ = inf

Q∈RH∞

∥∥∥∥1 +
1

1 − q
N(Y − MQ)

∥∥∥∥2

2

, J∗
2 = inf

Q∈RH∞

∥∥∥∥− 1

1 − q
N(X − NQ)

∥∥∥∥2

2

(10)

According to (6) and (10), because Lz and Bp are the all-pass factors, it follows that

J1
∗ = inf

Q∈RH∞

∥∥(Lz
−1 − 1) + (1 + Nn(Y − MQ))

∥∥2

2

As (Lz
−1 − 1) ∈ H⊥

2 , (1 + Nn(Y − MQ)) ∈ H2, thus

J∗
1 = ∥L−1

z − 1∥2
2 + inf

Q∈RH∞

∥∥B−1
p (1 + NnY ) − NnMmQ

∥∥2

2

It follows the same arguments as in [11] that∥∥L−1
z − 1

∥∥2

2
=

ns∑
i=1

2Re(zi) (11)

Denote J∗
11 = inf

Q∈RH∞

∥∥B−1
p (1 + NnY ) − NnMmQ

∥∥2

2
, and then based on a partial fraction

procedure, we can obtain B−1
p (NnY + 1) =

m∑
j=1

s+p̄j

s−pj

Nn(pj)Y (pj)+1

bj
+ R1, where R1 ∈ RH∞,

bj = Π
i∈N
i̸=j

pj−pi

pj+p̄i
.

Therefore,

J∗
11 = inf

Q∈RH∞

∥∥∥∥∥ m∑
j=1

(
s+p̄j

s−pj
− 1
)

Nn(pj)Y (pj)+1

bj
+ R1 +

m∑
j=1

Nn(pj)Y (pj)+1

bj
− NnMmQ

∥∥∥∥∥
2

2

.

As
(

s+p̄j

s−pj
− 1
)
∈ H⊥

2 , and

(
R1 +

m∑
j=1

Nn(pj)Y (pj)+1

bj
− NnMmQ

)
∈ H2, it follows that

J∗
11 =

∥∥∥∥∥ m∑
j=1

2Re(pj)

s−pj

Nn(pj)Y (pj)+1

bj

∥∥∥∥∥
2

2

+ inf
Q∈RH∞

∥∥∥∥∥R1 +
m∑

j=1

Nn(pj)Y (pj)+1

bj
− NnMmQ

∥∥∥∥∥
2

2

Because Nn and Mm are outer functions and minimum phases, we can obtain that

inf
Q∈RH∞

∥∥∥∥∥R1 +
m∑

j=1

Nn(pj)Y (pj)+1

bj
− NnMmQ

∥∥∥∥∥
2

2

= 0, hence

J∗
11 =

n∑
i,j∈N

4Re(pj)Re(pi)

(p̄j + pi) b̄jbi

[
(Nn(pj)Y (pj) + 1)H (Nn(pj)Y (pj) + 1)

]
(12)

Simultaneously, according to (4) and M(pj) = 0, we can obtain

Nn(pj)Y (pj) = −(1 − q)−1L−1
z (pj)

Hence

Nn(pj)Y (pj) + 1 = 1 − (1 − q)−1L−1
z (pj) (13)

According to (10)-(13), we can obtain

J∗
1 =

n∑
i=1

2Re(zi) +
n∑

i,j∈N

4Re(pj)Re(pi)

(p̄j+pi)b̄jbi
ωHω

bj = Π
i∈N
i̸=j

pj−pi

p̄i+pj
, ω = 1 − (1 − q)−1L−1

z (pj)
(14)
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According to (6) and (10), because Lz is the all-pass factors, it follows that

J∗
2 = inf

Q∈RH∞

∥∥∥∥NnX

Lz

− (1 − q)NnNnQ

∥∥∥∥2

2

Based on a partial fraction procedure, we can obtain NnX
Lz

=
n∑

i=1

s+z̄i

s−zi

Nn(zi)X(zi)
ai

+ R2,

where R2 ∈ RH∞, ai = Π
j∈N
j ̸=i

zi−zj

zi+z̄j
.

Therefore,

J∗
2 = inf

Q∈RH∞

∥∥∥∥ n∑
i=1

(
s+z̄i

s−zi
− 1
)

Nn(zi)X(zi)
ai

+ R2 +
n∑

i=1

Nn(zi)X(zi)
ai

− (1 − q)NnNnQ

∥∥∥∥2

2

.

Because
(

s+z̄i

s−zi
− 1
)
∈ H⊥

2 , and

(
R2 +

n∑
i=1

Nn(zi)X(zi)
ai

− (1 − q)NnNnQ

)
∈ H2, it follows

that

J∗
2 =

∥∥∥∥∥
n∑

i=1

(
s + z̄i

s − zi

− 1

)
Nn(zi)X(zi)

ai

∥∥∥∥∥
2

2

+ inf
Q∈RH∞

∥∥∥∥∥R2 +
n∑

i=1

Nn(zi)X(zi)

ai

− (1 − q)NnNnQ

∥∥∥∥∥
2

2

We choose an appropriate Q, which makes inf
Q∈RH∞

∥∥∥∥R2 +
n∑

i=1

Nn(zi)X(zi)
ai

− (1 − q)NnNnQ

∥∥∥∥2

2
= 0.

By a simple computation, we can obtain

J∗
2 =

n∑
i,j∈N

4Re(zi)Re(zj)

(zi+z̄j)āiaj

[
(Nn(zi)X(zi))

H(Nn(zi)X(zi))
]

(15)

where ai = Π
j∈N
j ̸=i

zi−zj

zi+z̄j
.

According to (8), (10), (14) and (15), the proof is completed.
Theorem demonstrates the tracking performance limitation of SISO NCSs generally

depends on the non-minimum phase zeros position, unstable poles position of a given
plant, quantization interval and packet dropouts probability. It is obvious that this effect
will in general degrade the tracking performance limitation because of quantitative interval
and packet dropouts probability constraint in NCSs.

4. Numerical Example. Consider an unstable plant model described by G(s) =
s−0.1

(s+0.1)(s−k)
, the non-minimum phase zeros is located at z1 = 0.1, and it has an unsta-

ble pole for any k > 0 at p1 = k. Assume the packet dropouts probability q = 0.5, where
θ = 1, when the quantization interval is ∆1 = 0, ∆2 = 1, ∆3 = 2. From Theorem 3.1,
the tracking performance limitation of the system with different quantization intervals is
shown in Figure 2. From Figure 2, we can see that the tracking performance limitation is
connected with the quantization interval, moreover, the tracking performance limitation
will degrade when the quantization interval increases. From Figure 2, it can also be seen
that the tracking performance limitation is degraded when the non-minimum phase zeros
position move closer to the unstable pole position.

When the packet dropouts probability q = 0.5, and the quantization interval ∆ = 3, ac-

cording to Theorem 3.1, the tracking performance limitation is J3
∗ = 0.2+2k

(
1 − 2k+0.1

k−0.1

)2
+ 3

20

(
1

0.1−k

)2
.



292 Z. ZHOU, J. WU, X. ZHAN AND B. WU

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7
x 10

4

pole location k

T
ra

ck
in

g 
er

ro
r 

J*  

∆ 
1

∆ 
2

∆ 
3

Figure 2. Tracking performance limitation with different quantization intervals
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Figure 3. Tracking performance limitation of NCSs

The tracking performance limitation of networked control systems with packet dropouts
constraint was studied in paper [12]. According to [12], we can obtain J4

∗ = 20 +

2k
(
1 − 2k+0.1

0.1−k

)2
. Then, the tracking performance limitation in the tow cases is shown

in Figure 3.
From Figure 3, we can see that the tracking performance limitation is degraded when the

non-minimum phase zeros position move closer to the unstable pole position. Compared
with [12], the tracking performance limitation is worse by the quantization interval and
packet dropouts. Thus, the quantization error affects the tracking performance limitation.

5. Conclusions. The tracking performance limitation of networked control systems with
packet dropouts and quantization has been investigated in this paper. The tracking



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 293

performance limitation is obtained by using the Youla parameterization technique. It is
shown that the tracking performance limitation is dependent on the non-minimum phase
zeros position, the unstable pole position of the plant, the quantization interval and the
packet dropouts probability. It is also proved how quantization and packet dropouts
probability may fundamentally destroy the NCSs tracking capability. Finally, a typical
example is given to illustrate the theoretical results.
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