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Abstract. This paper investigates the minimum information rate for linear quadratic
(LQ) control of stochastic linear systems, where the sensors and controllers are geo-
graphically separated and connected via noiseless, bandwidth-limited digital communica-
tion channels. A control scheme is given to achieve the minimum information rate for
LQ control. In particular, we argue the tradeoffs between the control cost and the data
rate of the channel, present an explicit formula on the tradeoffs between the LQ cost and
the information rate, and derive upper bounds on the corresponding LQ cost under data
rate limitations.
Keywords: Linear quadratic control, Limited information rates, Stabilization, Net-
worked control systems

1. Introduction. Many advances in recent emerging applications (industrial automa-
tion, sensor networks, vehicle systems, aerospace industry, etc.) have led to increasing
activity in understanding and designing networked control systems. The problem arises
when the sensors, plant and controller are geographically separated and connected via
bandwidth-limited digital channels. However, the limitations in the communication links
(such as data rate limitations, packet dropout, time delay) often affect control perfor-
mances significantly [1,2].

Issues of the type discussed are motivated by several pieces of work in the recent litera-
ture. The line of work of control under constrained communication channels was initiated
by Bansal and Basar [3]. Wong and Brockett [4] further considered the issues of cod-
ing, communication protocols, and delays explicitly. A high-water mark in the study of
quantized feedback using data rate limited feedback channels is known as the data rate
theorem that states the larger the magnitude of the unstable poles is, the larger the re-
quired data rate through the feedback loop is. The intuitively appealing result was proved
in [5-7], indicating that it quantifies a fundamental relationship between unstable physical
systems and the rate at which information must be processed in order to stably control
them. When the feedback channel capacity is near the data rate limit, control designs
typically exhibit chaotic instabilities. This result was generalized to different notions of
stabilization and system models, and was also extended to multi-dimensional systems [8-
10]. Control under communication constraints inevitably suffers signal transmission delay,
data packet dropout and measurement quantization which might be potential sources of
instability and poor performance of control systems [11-13].
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This paper is concerned with LQ control problem for networked control systems over
bandwidth-limited communication channels. Our purpose is to present a control scheme
to achieve some given control objectives under information limitations. Different from
the literature, no assumption that system matrix contains only marginally stable and
unstable eigenvalues is made. It turns out in our results that the stable part still plays a
key role in achieving the LQ cost. Our work here differs in that an explicit formula for
the tradeoffs between the LQ cost and the data rate of the channel is proposed and a full
knowledge optimal cost is presented in our results.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 presents the control scheme under information limitations; Section
4 deals with LQ control problem for networked control systems with limited information
rates; conclusions are stated in Section 5.

2. Problem Formulation. Consider a stochastic linear system described by

Ẋ = AX + BU + FW

where X ∈ Rn is the state process, U ∈ Rm is the control input, and W ∈ Rp is the process
disturbance. A, B, and F are known constant matrices with appropriate dimensions. The
corresponding discrete-time system is

X(t + 1) = ΥX(t) + ΘU(t) + W (t) (1)

where Υ and Θ are known constant matrices with appropriate dimensions.
Different from the literature, no assumption that system matrix Υ contains only margi-

nally stable and unstable eigenvalues is made. It turns out in our results that the stable
part still plays a key role in achieving the LQ cost. It is assumed that

A0: Suppose that the pair (Υ, Θ) is controllable, and the plant states are measurable;
A1: The initial condition X(0) and disturbance W (0), · · · ,W (t) are mutually inde-

pendent random variables with zero mean, satisfying E∥X(0)∥2 < Φ0 < ∞ and
E∥W (t)∥2 < ΦW < ∞, respectively;

A2: The sensors and controllers are geographically separated and connected by errorless
digital channels without time delay. Then, the encoder and decoder have access to
the previous control actions.

A3: Let H be the unitary matrix that diagonalizes Υ = H ′ΛH where Λ = diag[λ1(Υ),
· · · , λn(Υ)] and λi(Υ) denotes the ith eigenvalue of Υ (i = 1, · · · , n).

In this paper, the main purpose is to present a control policy to stabilize system (1) in
the mean square sense

lim sup
t→∞

E∥X(t)∥2 < ∞ (2)

using the finite information rate provided by the digital feedback link. The LQ control
problem under information rate limitations will be discussed. We also design the control
scheme to satisfy some given control objectives, and establish a relation between the LQ
cost and the information rate of the channel.

3. The Control Scheme under Information Limitations. In this section, we give
the quantization, coding, and control schemes for system (1). Here, we quantize, encode
the plant states by an adaptive differential coding strategy, and transmit the information
of the plant states over a noiseless, bandwidth-limited digital channel.

Let Xh(t) denote the decoder’s estimate of X(t) on the basis of the channel output.
Define

Xb(t) := HX(t), Xs(t) := HXh(t).

Then, system (1) may be rewritten as

Xb(t + 1) = ΛXb(t) + HΘU(t) + HW (t).
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Here, we implement a quantized state feedback control law of the form

U(t) = KXh(t) (3)

where K is the controller gain.
Let Xg(t) := (Υ + ΘK)Xh(t− 1) denote the prediction value of X(t) at time t. Define

Xv(t) := HXg(t) and Z(t) := Xb(t)−Xv(t), where Z(t) denotes the prediction error. By
Assumption A2, we know that the encoder and decoder have access to previous control
actions. Thus, we set Xg(t) := (Υ+ΘK)Xh(t−1) such that the encoder and decoder can
obtain the same prediction value too. Then, we quantize, code Z(t), and then transmit
the information of Z(t). Let Zh(t) denote the estimate of Z(t). Thus, we have Z(t) =
Zh(t) + V (t) and Xs(t) = Xv(t) + Zh(t), where V (t) := [v1(t) v2(t) · · · vn(t)]′ denotes the
quantization error with zero mean. Thus, the decoder estimate is defined as

Xh(t) = H ′Xs(t) = Xg(t) + H ′Zh(t).

It means that, the decoder can obtain the estimate Xh(t) of X(t) on the basis of the
channel output Zh(t) such that we may design a closed-loop controller to stabilize the
unstable plant.

4. LQ Control under Information Limitations. In this section, we deal with LQ
control problem for linear time-invariant systems over limited capacity communication
channels, and quantify the LQ cost by

J1 = lim supt→∞ EX ′(t)QX(t)

where Q ∈ Rn×n is symmetric positive definite. Here we are concerned with how small
the state can be made as t → ∞. Here, let the parameter ε denote the regulated variable
on the LQ cost. Then, we have the following result.

Theorem 4.1. Consider system (1) under Assumptions A0-A3. Assume that all eigen-
values of Υ+ΘK lie inside the unit circle. For any ε ∈ (0, 1), there exists a control policy
of the form (3) such that the closed-loop system (1) is stabilizable in the mean square
sense (2) with the LQ cost obtained by

J1 = lim supt→∞ EX ′(t)QX(t)

<
Φw

(1 − ε)(1 − ∥Υ + ΘK∥2)

[
ε∥Υ + ΘK∥2 ·

∥∥∥Q
1
2 Υ−1

∥∥∥2

+
∥∥∥Q

1
2

∥∥∥2

− 2ε
∥∥(Υ + ΘK)′QΥ−1

∥∥]
if the information rate of the channel satisfies the following inequality:

R > 1
2
Σi∈Ξ log2

λ2
i (Υ)

ε
(bits/sample)

where Ξ := {i ∈ {1, 2, · · · , n} : λ2
i (Υ) > ε}.

Proof: Consider the closed-loop system (1). We have

X(t + 1) = ΥX(t) + ΘKXh(t) + W (t)

which can also be rewritten as

X(t + 1) = Υ(X(t) − Xh(t)) + (Υ + ΘK)Xh(t) + W (t). (4)

Notice that
X(t) = H ′Xb(t) = H ′(Xv(t) + Z(t)),

Xh(t) = H ′Xs(t) = H ′(Xv(t) + Zh(t)).

Then,

X(t) − Xh(t) = H ′(Z(t) − Zh(t)) = H ′V (t). (5)
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Furthermore, it holds that

Xg(t) = (Υ + ΘK)Xh(t − 1).

Substitute the equation above and (5) into (4), and obtain

X(t + 1) = ΥH ′V (t) + Xg(t + 1) + W (t)

which is equivalent to

Xb(t + 1) = ΛV (t) + Xv(t + 1) + HW (t).

Since we have
Z(t + 1) = Xb(t + 1) − Xv(t + 1),

it follows that
Z(t + 1) = ΛV (t) + HW (t). (6)

Namely,
Z(t) = ΛV (t − 1) + HW (t − 1).

Furthermore, it follows from (5) that

Xv(t) = H(Υ + ΘK)Xh(t − 1) = H(Υ + ΘK)(X(t − 1) − H ′V (t − 1)).

Then, we have

E[X ′
v(t)HQH ′Z(t)]

= E [(X(t − 1) − H ′V (t − 1))′(Υ + ΘK)′H ′HQH ′(ΛV (t − 1) + HW (t − 1))] .

Here, X(t−1), V (t−1), and W (t−1) are mutually independent random variables. Then,
we have

E[X ′(t − 1)V (t − 1)] = 0, E[X ′(t − 1)W (t − 1)] = 0, E[V ′(t − 1)W (t − 1)] = 0.

Thus, it follows that

E[X ′
v(t)HQH ′Z(t)] = −E[V ′(t − 1)H(Υ + ΘK)′QΥH ′V (t − 1)].

Since X(t) = Xg(t) + H ′Z(t) holds, we have

E[X ′(t)QX(t)] = E[(Xg(t) + H ′Z(t))′Q(Xg(t) + H ′Z(t))]

= E[X ′
g(t)QXg(t)] + E[Z ′(t)HQH ′Z(t)] + 2E[X ′

v(t)HQH ′Z(t)]

= E[X ′
g(t)QXg(t)] + E[Z ′(t)HQH ′Z(t)]

− 2E[V ′(t − 1)H(Υ + ΘK)′QΥH ′V (t − 1)].

Notice that

lim supt→∞ E[V ′(t)H(Υ + ΘK)′QΥH ′V (t)]

= lim supt→∞ E[V ′(t − 1)H(Υ + ΘK)′QΥH ′V (t − 1)].

Thus,

lim supt→∞ E[X ′(t)QX(t)]

= lim supt→∞ E[X ′
g(t)QXg(t)] + lim supt→∞ E[Z ′(t)HQH ′Z(t)]

− 2 lim supt→∞ E[V ′(t)H(Υ + ΘK)′QΥH ′V (t)].

(7)

It follows from (6) that

E[Z ′(t + 1)HQH ′Z(t + 1)] = tr
(
HQH ′Λ2ΣV (t)

)
+ E

∥∥∥Q
1
2 W (t)

∥∥∥2

where we define ΣV (t) := E[V (t)V ′(t)]. Here, the parameter ε denotes the regulated
variable on the the LQ cost. If we present the quantization scheme to make the following
condition hold:

εσ2(zi(t)) = λ2
i (Υ)σ2(vi(t)) (i = 1, 2, · · · , n) (8)
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where we define σ2(zi(t)) := E [z2
i (t)] and σ2(vi(t)) := E [v2

i (t)], it holds that

εE[Z ′(t)HQH ′Z(t)] = εtr
(
HQH ′ΣZ(t)

)
= tr

(
HQH ′Λ2ΣV (t)

)
where we define ΣZ(t) := E[Z(t)Z ′(t)]. This implies

E [Z ′(t + 1)HQH ′Z(t + 1)] = εE [Z ′(t)HQH ′Z(t)] + E
∥∥∥Q

1
2 W (t)

∥∥∥2

.

Thus,

lim supt→∞ E[Z ′(t)HQH ′Z(t)] <
1

1 − ε

∥∥∥Q
1
2

∥∥∥2

ΦW . (9)

It means that we quantize only zi(t) corresponding to the ith eigenvalue of Υ subject
to the condition: λ2

i (Υ) > ε. Then, it follows that the condition (8) can hold if the
information rate satisfies the following condition:

R >
1

2
Σi∈Ξ log2

σ2(zi(t))

σ2(vi(t))
=

1

2
Σi∈Ξ log2

λ2
i (Υ)

ε
(bits/sample)

where Ξ := {i ∈ {1, 2, · · · , n} : λ2
i (Υ) > ε}.

It also follows from the condition (8) that
ε

λ2
i (Υ)

[H(Υ + ΘK)′QΥH ′]i,i σ
2(zi(t)) = [H(Υ + ΘK)′QΥH ′]i,i σ

2(vi(t)) (i = 1, 2, · · · , n)

where [·]ij denotes an element of a matrix (i, j = 1, · · · , n). Thus,

εtr
[
H(Υ + ΘK)′QΥ−1H ′ΣZ(t)

]
= tr

[
H(Υ + ΘK)′QΥH ′ΣV (t)

]
.

It means that

E [V ′(t)H(Υ + ΘK)′QΥH ′V (t)] = εE
[
Z ′(t)H(Υ + ΘK)′QΥ−1H ′Z(t)

]
.

Furthermore, it follows from (6) that

E[Z ′(t + 1)H(Υ + ΘK)′QΥ−1H ′Z(t + 1)]

= tr[H(Υ + ΘK)′QΥ−1H ′Λ2ΣV (t)] + E[W ′(t)(Υ + ΘK)′QΥ−1W (t)].

If the condition (8) holds, we have

εE[Z ′(t)H(Υ + ΘK)′QΥ−1H ′Z(t)] = εtr
[
H(Υ + ΘK)′QΥ−1H ′ΣZ(t)

]
= tr

[
H(Υ + ΘK)′QΥ−1H ′Λ2ΣV (t)

]
.

Then,

E[Z ′(t + 1)H(Υ + ΘK)′QΥ−1H ′Z(t + 1)]

= εE
[
Z ′(t)H(Υ + ΘK)′QΥ−1H ′Z(t)

]
+ E[W ′(t)(Υ + ΘK)′QΥ−1W (t)].

Thus, it follows that

lim supt→∞ E[V ′(t)H(Υ + ΘK)′QΥH ′V (t)]

= lim supt→∞ εE[Z ′(t)H(Υ + ΘK)′QΥ−1H ′Z(t)]

<
ε

1 − ε
∥(Υ + ΘK)′QΥ−1∥ΦW .

(10)

Furthermore, notice that

Xg(t + 1) = (Υ + ΘK)Xh(t) = (Υ + ΘK)(X(t) − H ′V (t)).

Thus,

E[X ′
g(t + 1)QXg(t + 1)]

= E[X ′(t)(Υ + ΘK)′Q(Υ + ΘK)X(t)] + E[V ′(t)H(Υ + ΘK)′Q(Υ + ΘK)H ′V (t)]

< ∥Υ + ΘK∥2(E[X ′(t)QX(t)] + E[V ′(t)HQH ′V (t)]).
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It means that

lim supt→∞ E[X ′
g(t)QXg(t)]

= lim supt→∞ EX ′
g(t + 1)QXg(t + 1)

< ∥Υ + ΘK∥2 (lim supt→∞ E[X ′(t)QX(t)] + lim supt→∞ E[V ′(t)HQH ′V (t)]) .

(11)

It follows from the condition (8) that

εE[Z ′(t)H(Υ−1)′QΥ−1H ′Z(t)] = εtr[H(Υ−1)′QΥ−1H ′ΣZ(t)]

= tr[HQH ′ΣV (t)] = E[V ′(t)HQH ′V (t)].

Furthermore, it follows from (6) that

E[Z ′(t + 1)H(Υ−1)′QΥ−1H ′Z(t + 1)]

= tr[H(Υ−1)′QΥ−1H ′Λ2ΣV (t)] + E[W ′(t)(Υ−1)′QΥ−1W (t)].

If the condition (8) holds, we have

E[Z ′(t + 1)H(Υ−1)′QΥ−1H ′Z(t + 1)]

= εE
[
Z ′(t)H(Υ−1)′QΥ−1H ′Z(t)

]
+ E

[
W ′(t)(Υ−1)′QΥ−1W (t)

]
.

Thus, it holds that

lim supt→∞ E[V ′(t)HQH ′V (t)]

= lim supt→∞ εE
[
Z ′(t)H

(
Υ−1

)′
QΥ−1H ′Z(t)

]
<

ε

1 − ε

∥∥∥Q
1
2 Υ−1

∥∥∥2

ΦW .
(12)

Substitute (9), (10), (11), and (12) into (7), and obtain

lim supt→∞ EX ′(t)QX(t) <
Φw

(1 − ε)(1 − ∥Υ + ΘK∥2)

[
ε∥Υ + ΘK∥2 ·

∥∥∥Q
1
2 Υ−1

∥∥∥2

+
∥∥∥Q

1
2

∥∥∥2

− 2ε
∥∥(Υ + ΘK)′QΥ−1

∥∥]
.

Thus, system (1) is stabilizable in the mean square sense (3). �
Notice that the parameter ε plays a key role in the inherent tradeoffs between control

and communication costs. An explicit formula on the relation between the LQ cost J1

and the information rate of the channel is given. A sufficient condition on the information
rate for stabilization is given in Theorem 4.1. Under the condition, some LQ costs can
be obtained too. In the literature, the information of the plant states corresponding to
the eigenvalues of system matrix Υ which lie outside the unit circle is transmitted. A
distinction with the existing literature is that we have to transmit some information of
the plant states corresponding to the eigenvalues of system matrix Υ which lie inside the
unit circle in order to achieve the specified LQ cost.

5. Conclusions. This paper addressed the performance control problem for stochastic
linear systems with limited information rates. The approach taken here was based on
the hypothesis that the sensors, plant and controller were connected by a rate-limited,
errorless communication channel. A control scheme was presented to achieve some given
LQ control objectives. An explicit formula on the tradeoff between the LQ cost and the
information rate of the channel was proposed in our results. The researches on robust
control for linear control systems under information limitations will be our future work.
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