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Abstract. In this paper, we present a visualization tool that efficiently supports rotati-

on-invariant boundary image matching. Supporting the rotation invariance in boundary

image matching is very important for the more accurate and more intuitive matching

result. We use the client-server model to design and implement the rotation-invariant

matching. First, the client converts a query image to a time-series and sends it to the

server. Second, the server performs the rotation-invariant matching by evaluating the

query on the database with indexes. Third, the client visualizes the result received from

the server. Experimental results show that our system supports the rotation-invariant

property efficiently and provides the intuitive analysis through line and polar charts.

Keywords: Rotation invariance, Boundary image matching, Time-series data, Rotation-
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1. Introduction. Recently, there have been a lot of research efforts on exploiting large
time-series databases for many applications such as document retrieval, image matching,
and biosequence matching [1, 2, 3, 7]. Also, there have been many efforts on visualization
of the mining result for time-series, image, and text data [5, 6, 11]. Visualization is a tech-
nique to communicate meaningful data or information by using images, charts, diagrams,
or animations [6]. Through the visualization, we can improve efficiency of recognition,
understanding, analysis, and process of the data [12].

Boundary image matching [4, 10] identifies the similar images by exploiting the time-
series extracted from boundary images. By converting boundary images into time-series
and exploiting fast time-series matching techniques, the boundary image matching can
efficiently support a huge volume of image databases. In this paper, we use the centroid
contour distance (CCD) [8, 10] to extract a time-series from a boundary image. The CCD
method maps a boundary image to a time-series of length n by evenly dividing 2π into
n angles (i.e., ∆θ = 2π/n) and computing the distance to each boundary point from the
centroid. Figure 1 shows an example of converting an image into a time-series.

In this paper, we design and implement a visualization tool for rotation-invariant bound-
ary image matching [9]. The rotation-invariant matching finds similar boundary images
correctly even though they have some rotations. Recently, efficient rotation-invariant al-
gorithms have been proposed in [9, 10]. To our best knowledge, however, there is no
visualization for rotation-invariant matching, so it is difficult to understand the rotation-
invariant matching result intuitively. To solve this problem, we develop an efficient tool
of visualizing the rotation-invariant matching result for the more intuitive and easier un-
derstanding and analysis. The proposed tool visualizes the matching result as not only
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Figure 1. An example of converting an image to a time-series by CCD

images but also line and polar charts for fast comparison and easy validation. In partic-
ular, using the polar charts we can intuitively and interactively compare the query image
with the similar data images of the matching result.

The rest of this paper is organized as follows. Section 2 explains the related work. Sec-
tion 3 presents the concept of the rotation-variant boundary image matching system with
its working framework. Section 4 explains the implementation result with its representa-
tive screenshots. We finally summarize and conclude the paper in Section 5.

2. Related Work. Time-series matching is the problem of finding the data time-series
similar to the given query time-series [1]. In order to find similar data time-series, the
matching method uses a similarity model based on the Euclidean distance [6, 7] or the
dynamic time warping (DTW) distance [5]. In this paper, we use the Euclidean distance
since it has been most widely used and easy to visualize the distance between image
boundaries.

Image matching [4, 10, 13], also known as content-based image retrieval (CBIR), iden-
tifies data images similar to the given query image. In image matching, the representative
features are colors, textures, and shapes. Among these features, we focus on image bound-
aries as the matching features. In this paper, we exploit the CCD method [4, 9, 10] to
extract image boundaries as shown in Figure 1. Regarding the rotation-invariant match-
ing, [9, 10] propose novel solutions, but these solutions focus on the matching performance
rather than the visualization, which is the major contribution of this paper.

In recent years, there have been a few efforts on visualization of the time-series matching
result. First, Lee et al. [5] visualize a two-dimensional matrix of computing the DTW
distance between query and data time-series, so we can visually understand the actual
process of computing the DTW distance. Second, Weber et al. [11] visualize time-series
data as various spiral shapes by varying spiral thickness and color degrees. These two
approaches, however, focus on original time-series only, that is, they do not consider
image time-series at all. Third, as prior work of this paper, Moon et al. [6] present a
visualization tool for basic boundary image matching. The tool visualizes the result of
range and k-nearest neighbor queries in boundary image matching with line and polar
charts. However, the tool supports the basic matching only and does not consider the
rotation invariance, which is the major technical contribution of this paper.

3. The Concept of Rotation-Invariant Boundary Image Matching. The rotation-
invariant boundary image matching [9] is the problem of finding similar boundary images
correctly even though they are rotated any angles. That is, even though an image is
rotated, we treat the rotated image as the original one by computing the rotation-invariant
distance. For query and data time-series Q = (q0, . . . , qn−1) and S = (s0, . . . , sn−1) of
length n, which are converted from boundary images, we compute their rotation-invariant
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distance, RID(Q, S), by shifting the query time-series one by one and computing the
Euclidean distance between the shifted query time-series and the data time-series. More
precisely, the rotation-invariant distance, RID(Q, S), is computed as Equation (1).
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In Equation (1), D(·) is the Euclidean distance function, % is the modular operator, and
Qj represents a j-rotated time-series of (qj , . . . , qn−1, q0, . . . , qj−1), which is obtained by
shifting the time-series Q by j times. As shown in Equation (1), RID(Q, S) considers all
possible j rotations, and thus, by using RID(Q, S), we can extend the basic boundary
image matching to support the rotation invariance.

However, RID(Q, S) of Equation (1) requires Θ(n) Euclidean distance computations,
and these many computations incur a critical performance overhead in the matching
process. To solve the problem, in this paper we use the triangular inequality-based solu-
tion [9]. Figure 2 shows how we use the triangular inequality in computing the rotation-
invariant distance. As shown in the figure, if we know D (Qj, S) and D (Qj , Qj+1), we
can compute a lower bound of D (Qj+1, S) as |D (Qj , S) − D (Qj , Qj+1)| by the triangular
inequality. If the lower bound exceeds the tolerance, the Euclidean distance D (Qj+1, S)
also exceeds the tolerance, and accordingly, we can discard Qj+1 without computing
D (Qj+1, S). Also, we can use the lower bound of D (Qj+1, S) for computing a lower
bound of D (Qj+2, S). More precisely, if we denote a lower bound of D (Qj+1, S) as lbj+1,
we can compute a lower bound lbj+2 of D (Qj+2, S) as |lbj+1 − D (Qj+1, Qj+2)|. Similarly,
we can also compute a lower bound lbj+3 of D (Qj+3, S) as |lbj+2 − D (Qj+2, Qj+3)|1. By
repeating this procedure of computing lower bounds and avoiding unnecessary Euclidean
computations, we can improve the rotation-invariant matching performance significantly
[9].
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Figure 2. Triangular inequality-based lower bound for RID(Q, S)

Figure 3 shows an overall framework of the proposed rotation-invariant boundary image
matching system, which works as a client-server model. First, the client sends a user-given
time-series, which is converted from a query image by CCD, with the user-specified toler-
ance ǫ to the server. Second, the server performs the rotation-invariant boundary image
matching to find similar data time-series from the database with indexes and returns the
matching result to the client. Third, the client visualizes the matching result to different
image formats and charts.

4. Implementation Results of Rotation-Invariant Matching System. We develop
the matching and visualization system in the following hardware and software environ-
ment. First, we implement the client on Microsoft Visual Studio 2010 on Windows 7
operating system, and we use C# language with MSChart. Second, we implement the

1The distances of D
(

Qj+1, Qj+2
)

and D
(

Qj+2, Qj+3
)

are computed only once as self-rotation dis-
tances in prior to starting the matching process. Thus, we can ignore the overhead of computing those
self-rotation distances for a large volume of image databases.
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Figure 4. Initial screen of a visualization window in the client

server on a Linux machine with CentOS 5.9 and use C language for implementing the
matching engine. We use a read data set consisting of 10,000 images, which are obtained
from the Web [4, 6] and convert an image to a time-series of length 360 by CCD [9, 10].

Figure 4 shows an initial screen of the proposed visualization tool for rotation-invariant
boundary image matching. In Part A© of the figure, the “Open” button is for selecting
a query image (time-series); a text box is for an input of the user-specified tolerance
ǫ; and the “Search” button is for sending the query with ǫ to the server. Part B© is for
showing the list of resulting images, which are received from the server, where each column
represents the similarity rank between query and data images, the image number, and
its actual rotation-invariant distance. Part C© is a visualization frame that displays the
rotation-invariant similar images.

Figure 5 shows example screenshots of executing the rotation-invariant matching. Fig-
ure 5(a) represents an execution result of the basic boundary image matching, and Figure
5(b) shows the corresponding result of the proposed rotation-invariant matching. As shown
in the figure, the visualization system displays the returned similar images in a form of
grid views. In Figure 5(a), the basic matching system misses some similar images rotated
from the original image since it does not support the rotation invariance; in contrast, in
Figure 5(b), the rotation-invariant system finds many rotated images correctly since it
supports the rotation invariance in the matching process.

Figure 6 shows a line chart which visualizes boundary time-series of query and data
images of Figure 5. As shown in the figure, the line chart represents query and data images
as their corresponding time-series in a single window, so we can intuitively understand
the distance difference between those time-series. A list box in the left part of Figure 6
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(a) Basic matching system

(b) Rotation-invariant matching system

Figure 5. Example screenshots of boundary image matching systems

Figure 6. Line chart for visualizing query and data time-series in a window
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(a) Basic matching system

(b) Rotation-invariant matching system

Figure 7. Polar charts for visualizing query and data time-series in a window

shows the similar data images with their identifiers and actual distances from the query
image, so we can easily know the rank of each data image and its actual distance from
the query image. Two direction buttons located in the bottom right part of the figure are
used for moving forward or backward to next similar images, so we can use those buttons
to compare the query time-series with multiple data time-series.

Figure 7 shows polar charts which visualize image boundaries of query and data images
in a single window. Using a polar chart, we can visualize a time-series, which is converted
from an image, to an image boundary. Image boundaries of Figure 7 correspond to the
images of Figure 5. Figure 7(a) shows a basic matching system which does not support
the rotation invariance while Figure 7(b) shows a rotation-invariant matching system that
supports the rotation invariance in the matching process. In Figure 7(a), two boundary
images are not similar with each other, but they are identified as similar ones since the
system does not support the rotation-invariant property. In contrast, in Figure 7(b), the
system identifies two image boundaries as similar ones since it supports the rotation-
invariant property. Actually, those two images of Figure 7(b) are the same except that
one is rotated from the other one. If the system does not support the rotation invariance,
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it identifies those two images as dissimilar ones, but if it supports the rotation invariance,
it returns them as similar ones. In particular, using forward and backward buttons of the
bottom right part, we can rotate a query image step by step and compare it with a data
image interactively.

5. Conclusions and Future Work. In this paper, we design and implement a rotation-
invariant boundary image matching system as a client-server model. In particular, the
client supports a visualization tool which not only displays similar images in grid cells
but also draws them with line and polar charts. Using the pairwise image comparison
and the line/polar chart representation, we can understand the matching result intuitively
and make a correct decision even for a variety of image rotations. We believe that the
proposed rotation-invariant matching system will be very useful for various boundary
image matching applications since it supports the rotation-invariant property efficiently,
and at the same time it visualizes the matching result interactively. As the future work,
we will consider the visualization of scaling-invariant and symmetric-invariant boundary
image matching in the time-series domain.
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