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ABSTRACT. In order to improve the performance of the Genetic Algorithm, we have
proposed a new method using the Dynamical Markov Chain Monte Carlo in previous
studies. This method has been improved by extending the method to implement Sim-
ulated Annealing to the Genetic Algorithm. It is well known that the Tabu Search is
another meta-heuristic approach and it can be performed for the global search problem
such as a combinatorial optimization problem by using the memory structure. Therefore,
in order to make the advantages of two methods work together, in this paper we will com-
bine the Dynamical Markov Chain Monte Carlo with Tabu Search. In the experimental
verification we apply this combinatorial method for the Job Shop Scheduling problem. By
experimental results we confirm that it is quite effective for the optimization.
Keywords: Genetic Algorithm, Crossover, Dynamical Markov Chain Monte Carlo,
Tabu Search, Support state, Job Shop Scheduling

1. Introduction. In general, Genetic Algorithm (GA), Simulated Annealing (SA) and
Tabu Search (TS) are well used as meta-heuristics method to solve the optimization prob-
lem. GA [1] has been applied in various areas in the current society. The crossover of
GA is certainly powerful mechanism, but it has lost the diversity of the solutions. By the
mutation only, there is a limit by single exploration, even to maintain diversity. In SA
method, introduction of temperature is effective in maintaining the diversity by Boltz-
mann distribution. Therefore, there has been studied about the combined methods of GA
and SA such as the parallel recombined simulated annealing [2-7]. In order to make fur-
ther development on these combined methods, we proposed the combining method called
Dynamical Markov Chain Monte Carlo method (DMCMC) [8-11] to solve the computa-
tionally hard optimization problems. In the experiment of convergence [4] to the invariant
distribution with the deceptive problem, and in the experiment of the application to the
job shop schedule problem, we have proved that the DMCMC is more effective than the
conventional method in a previous paper [10].

TS is another meta-heuristic method. The introduction of the tabu aims at reducing the
search time without searching again the bad value that has been found. Now in order to
improve the searching ability of DMCMC we make a hybrid algorithm combined with T'S
[12]. Therefore, how to combine them is an important issue that we need to solve. After
combining the two methods, we also did the experiments to prove this hybrid algorithm
is effective. And the results demonstrate that this combined method is indeed working,
and it is even faster than the DMCMC method.

Contents of our paper are as follows. After a brief description on Dynamical Markov
Chain Monte Carlo method and Tabu Search in Section 2, in Section 3, we also describe
the method of TabuDMC, and explain how to combine T'S and DMCMC. In this research
we apply Job Shop Scheduling problem (JSS) [1,16] to prove our methods are effective.
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Therefore, in Section 4 we illustrate the JSS, and explain how to set the Tabu List. After
we make extensively experiments in Section 5, the final section is devoted to a conclusion
and a discussion.

2. Materials and Methods.

2.1. DMCMC (Dynamical Markov Chain Monte Carlo method). DMCMC has
been described extensively in a previous paper [10]. Therefore, we just describe the
advantages of DMCMC here. In DMCMC by using the crossover operator we placed
the different temperatures in the two populations. Therefore, (a) the support population
(which has high temperature) makes the search of object population (which has low
temperature) to escape from the quasi-optimal solution; (b) not only that, the support
population also gives the search large amount of choices in a wide range; (¢) meanwhile,
by the low temperature, the object population is searching the quasi-optimal solution in
detail at every feasible space until finding the optimal solution. Therefore, with those
advantages the DMCMC is faster than other methods.

2.2. TS (Tabu Search). TS [12-14] is a technique that can perform the global search
problem such as a combinatorial optimization problem. The advantages are like: (a)
it can prevent the exploration terminated at quasi-optimal solutions; (b) it permits the
transition to the candidate solution that is even worse than current one; (c) it can prevent
the exploration from searching the same area repeatedly. These benefits are formed by
equipment called Tabu List (TL) based on a history of all transitions.

Theoretically, S is the set of feasible solutions for a problem (). For a solution s &€
S, we calculate the cost value of s by cost function fc : s — C. In TS a definition
of neighborhood is very important as well as that of Simulated Annealing. Especially
TS requires a lot of neighborhood and its ability depends on the method for setting
neighborhood. There is also a possibility that the exploration is trapped in the same
neighborhoods. Therefore, we use a function F' to define a neighborhood structure and
associate a set of solutions F'(s). From the set of solutions F'(s) we find the direction that
starts from the solution s. Then we memorize the movements in the TL.

Neighborhood. We set N as the number of the neighborhoods of s. If the N is a
large number, the improvement of solution is very fast. On the other hand, it is easy to
fall into the quasi-optimal solution. Conversely, if we decrease the N, the solution can
escape from the quasi-optimal immediately. However, the accuracy of the solution might
be reduced greatly. Then if all neighborhoods of this state are written in the TL, the
search will stop at this state. In this case the transition can get to another state all the
time.

TL (Tabu List). The memory structure is crucial for a T'S algorithm. In this algorithm
the memory structure is expressed as the TL. We assumed that we make a transition from
the current solution s to a candidate solution s’ € F(s), and the bad movement in s — s’
and s’ — s will be written in the TL. In our recording method we write the differences
between s" and s instead of writing the content of s simply. Moreover, at each transition
we will record the bad movement in the TL and delete the oldest one. That is handled
by “First In First Out” (FIFO) strategy.

3. TabuDMC. In this section we will explain how to combine the TS with DMCMC.
We named the combined one as TabuDMC. Because the advantages of two methods are
complementary, purposes of this study are to prove the advantages can be combined.

In DMCMC we introduced two populations as an object state and a support state. In
addition, two kinds of temperature that is characterized by SA are introduced to each
population and we set the temperature separately in each population. So in the following
the symbols will be introduced. Go represents a current object state; Go’ represents one
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state of neighborhood states of the current object one; G's represents a current support
state; Gs' represents one state of neighborhood states of the current support one; To
represents the temperature of object state; T's represents the temperature of support

state; the symbols of V' are the cost values of corresponding states. And, ¢ = %,
el = Vo' —Vo + Vs'—Vs
To Ts

(1) Initialize the states Go, Go', G's and Gs', and immediately calculate Vo, Vs that are
the evaluation values of Go and G's. And set the temperatures To and Ts;
(2) Memorize the contents of Go' and check in the TL
Already written: Restart step (2);
Not written: Calculate the Vo', then next step;
(3) As the evaluation (when the excellent state is that the evaluation value is the smaller
one):
a) If € <0, then the contents of Go and Vo will be replaced by those of Go' and Vo';
i. If e <0, then we write the transition from Go' to Go in the TL;
b) If € > 0, then will generate a real number R (0 < R < 1) randomly;
i. If R > e ¢, then the contents of Go and Vo will be rewritten by those of Go
and Vo';
ii. Else, the transition from Go to Go' is written in the TL; at the same time each
value remains unchanged and go to the next step;
(4) By crossover Go and Gs, Go' and Gs' will be covered, and calculate their evaluation
values Vo' and V§';
(5) As the evaluation:
a) If &' <0, then the contents of Go, Vo and Gs, Vs will be replaced by those of Go',
Vo and Gs', V¢
b) If &' > 0, then we will generate a real number R (0 < R < 1) randomly;
i. If R > e, then the contents of Go, Vo and Gs, Vs will be replaced by those
of Go', Vo' and Gs', V§';
1. Flse, each value remains unchanged and go to the next step;
(6) If one of stopping conditions is satisfied, then the loop will be terminated. If they are
not satisfied, the loop returns to step (2).

4. Application to Job Shop Scheduling (JSS) Problem. JSS [16-18] is a problem
that determines the order of the operators that one machine processes, and minimizes the
time (Makespan), when all operators finished. Below we use the work order method [16]
of the JSS to carry out experiments, and the specific application method is written in the
paper [10].

In the above part we have introduced the exploration principle of TS and the evalu-
ation way of DMCMC. Therefore, the next problem is how to set the TL to record the
neighborhood states of the work order method.

Tabu List (TL) for JSS. Since the capacity of the TL is limited, that is set to
5000 records after some experiments. In each record we divide it into two parts: the
current state part and the neighborhood states part. We use the chromosome of the
work order method to represent the current part [12]. The other one is represented by
a set of transiting routes that connect the current state and the neighborhood state.
Specifically, we implemented the TS only in the mutation step. Therefore, in the part
of neighborhood states, we write in all the routes that we can find. And each route is
written by two numbers that they are two coordinate points.

For example: there is a 4 digits current state “12347. Because we only record the
mutation step and the mutation is swapping two points, the neighborhoods of this state
are expressed as (i, j), and the (i, j) express the two points that have been swapped.

e.g., (1, 2): 2134, (1, 3): 3214, (1, 4): 4231, (2, 3): 1324, (2, 4): 1432, (3, 4): 1243.

In neighborhood states part of the TL we just use the numbers in parentheses.
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We update the TL by FIFO strategy. And we carried out the strategy by the searched
times “N” of each current state and a search order list (SOL) of the record. In this SOL
we sequentially credited the line number of each record. According to the position of each
number we determine the order of records. It should be noted that the SOL only exists
in one trail experiment. After the end of an exploration of the one trial, the SOL will be
discarded, although the TL is used in the next trial experiment. Because the TL has the
knowledge which is useful for the search and the SOL has the strong dependence on the
past transitions. Then from the start of the new trial exploration, until 5000 numbers
were fully recorded, we need to determine the order of update by the size of N. That is
because we need to retain the large N in early exploration.

5. Experiments. A purpose of experiments in this section is performance comparison
of DMCMC and TabuDMC methods with conventional methods. There are mainly five
methods used for comparison here. Methods GA, TS and “Hybrid Genetic Algorithm and
Tabu Search” (HGATS) were described at reference [14]. Especially the HGATS method
has been confirmed to have an excellent searching ability. Here we use their results
to compare with our methods directly. DMCMC uses the work order method (called
DMCMC from here). And TabuDMC uses the work order method (called TabuDMC
from here). These experiments use data that have been put in JSS benchmark [15].

5.1. Configuration of parameters. In order to evaluate the performance of DMCMC
and TabuDMC, we should determine a number of population and two temperatures. And
we have illustrated how to determine the parameters in a previous paper [11]. Therefore,
we set the number of population at 8. And the two temperatures were chosen on a
combination of 77 = 3, T, = 10, because this choice has given us good result that is
described at paper [10,11].

5.2. Results of experiments. Experiments are performed using kinds of JSS testing
instances from the JSS benchmark [15,19]. Below we used the best values of Makespan
for comparison from the experiments. The reason is that the best value can reflect the
potential of each method. Depending on that the optimal is known or not, we can divide
the results of instances into two categories. One is the general size category that the
optimal is known as usual. In this category there are 22 kinds of instances, and these
instances have been verified in previous papers [10,11]. In those papers we calculated
the average values of Makespan showing the performance of DMCMC is excellent. In
addition, in this paper we use the best values of Makespan, so the results of each method
are very close, almost all methods have found the optimal values, so that it is difficult to
determine the differences between each method. Therefore, we do not show the results
of the 22 kinds of instances here. The other category is the enormous size one that the
optimal is not known. And the results have shown in Table 1.

We make the table be divided into 4 parts. Column 1 specifies the instances. Column 2
specifies the size of each instance, which is expressed as the number of jobs and machines.
Column 3 is composed of the UB and LB. UB is upper bound value, and LB is lower
bound. Therefore, the optimal value is proved to be a value betwee n the LB and UB.
And column 4 is obtained by subtracting the UB from Makespan. That is to make it
easier to compare with the various methods. And column 4 is composed by the results
of 5 methods. Therefore, 0 is the minimum result in column 4. A value 0 means that it
has found the UB. Certainly the method is more advantageous when the result value is
smaller than 0. The results of Table 1 are explained from here.

1) The results by all methods are “0” or close to “0”, when they solve the instances
(YNO1, YNO2). In these instances we can know the GA is even better than TS.



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 321

2) In instance YNO3 the results did not arrive at “0” by methods GA and T'S. However,
the results by HGATS, DMCMC, TabuDMC, are got to “0” or close to “0”. These show
the excellence of HGATS, DMCMC, TabuDMC.

3) In instances SWV16, SWV17, SWV18, SWV19, SWV20, although the results by
GA, TS, HGATS did not arrive at “0”, the results by DMCMC, TabuDMC are got to
“0”. Searches by the first 3 methods are difficult to find the UB, even upper UB more
than hundreds. However, by our 2 methods we have found the UB completely. These
results have shown the obvious superiority of DMCMC and TabuDMC.

4) In instances SWV11, SWV12, SWV13, SWV14, SWV15, YNO4, the results by all
methods did not arrive at “0”. Therefore, it is possible to compare the performance of each
method. And the superiority of TabuDMC is represented. Especially the performances
of SWV13, SWV14 and SWV15 have improved significantly.

TABLE 1. Results for instances of enormous size

Instances Instance size Optimal Differences between UB and Makespan
Jobs Machines | UB LB GA TS HGATS DMCMC TabuDMC
SWV11 50 10 2991 2983 209 513 21 24 14
SWV12 | 50 10 3003 2972 247 439 117 108 96
SWV13 | 50 10 3104 650 772 146 126 110
SWV14 | 50 10 2968 519 1038 244 127 121
SWV15 | 50 10 2904 2885 | 1331 1453 685 518 505
SWV16 | 50 10 2924 623 1062 402 0 0
SWV17 | 50 10 2794 475 665 211 0 0
SWV18 | 50 10 2852 28304 443 98 0 0
SWV19 | 50 10 2843 326 450 91 0 0
SWV20 | 50 10 2823 408 506 155 0 0
YNO1 20 20 888 826 2 7 0 0 0
YNO02 20 20 909 861 1 16 0 0 0
YNO3 20 20 893 827 31 163 0 1 0
YNO4 20 20 968 918 130 144 19 30 13
Average 2375.43 547.93 156.36 66.71 61.36

In the last line of Table 1, the average value of GA is extremely large, 2375.43. It means
that there are some instances whose result values are still far from the optimal. And the
average value of TS is 547.93, and that of HGATS is 156.36. The average values become
smaller gradually. However, even for HGATS the result is unsatisfactory. Then we look
at DMCMC and TabuDMC, and the results are 66.71 and 61.36, half of HGATS’s result.
Especially the TabuDMC'’s result is also the best one in five methods. Therefore, we can
understand our methods have the superior performance by comparing the 5 methods.

6. Summary. In previous papers [10,11] we have presented the method DMCMC that
is divided into two populations with different temperatures. And we have proved it to
be effective. In this paper we have applied a DMCMC method to combining with TS
and exert the advantages of both methods. We solved the optimization problem of JSS
by this combining method. In JSS there are many operations under various constraints.
With the change of each operation position, the final schedule also changes. We would
like to find the optimal schedule among them. The instances of the JSS benchmark are
used for experiments with five methods of GA, TS, HGATS, DMCMC and TabuDMC.
The results have shown that the performance of TabuDMC is the best one among them,
and the DMCMC method also has a good performance to solve the JSS problems.

In conclusion after the experimental verification we can say that the DMCMC method
can be combined with TS and applied to JSS. In addition, the six advantages can
play out at the same time. Throughout the whole results, the two methods (DMCMC
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and TabuDMC) of our research are more effective. In particular, the average value of
TabuDMC is 61.36. It is smaller than 66.71 of DMCMC. Even the result values of every
instance obtained by TabuDMC are smaller than those obtained by DMCMC. Therefore,
in all of these methods, the performance of TabuDMC is particularly prominent. We
can conclude that after lots of experiments and adjusting each parameter, the TabuDMC
method will obtain some better results. In the future in order to broaden the scope of
TabuDMC, we will continue to study the TabuDMC with other optimization problems.
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