
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 2, February 2016 pp. 323–330

A NOVEL APPROACH TO MINE SOFTWARE SIMILAR EXECUTION
PATHS BASED ON NODE RANK

Haitao He, Yang Liu∗, Jun Dong, Jiadong Ren
Hongfei Wu and Yanling Li

College of Information Science and Engineering
Yanshan University

No. 438, Hebei Avenue, Qinhuangdao 066004, P. R. China
haitao@ysu.edu.cn; ∗Corresponding author: liuyang ysu@163.com

Received July 2015; accepted September 2015

Abstract. Analyzing dynamic execution path is very useful to find similar execution
paths in software to reduce software testing cases. In this paper, a novel approach is
proposed to mine similar execution path to improve test efficiency. First all function calls
in software are mapped to nodes sequence by tracking software dynamic execution process.
Each node is assigned an initial integer to represent node order for function call. Then
the Software Node Rank Model (SNRM) is constructed. Next we use GCC and GNU to
recompile open source package to add debugging information to software execution path.
Due to loop, sequences maybe appear multiple times, and an algorithm is designed to
eliminate repetitive sequence pattern. By Exclusive Nor Operation (XNOR), we can get
the similarity among execution paths from binary sequence number corresponding with
nodes. When the similarity exceeds given threshold, we regard them as the similar test
path. Experimental results show efficiency of the method.
Keywords: Execution path, Similarity, Exclusive Nor Operation (XNOR), Sequence
mining

1. Introduction. Software testing is common technique for validating quality of soft-
ware, how to reduce the number of cases in software testing process has become a pressing
matter of the moment [1]. Analyzing similar execution path can greatly reduce test search
space.

There are defects of the traditional test method. Equivalence testing notices data
dependence relation and function itself. By these technologies, we give more consideration
to the judgment skills. Decision table technique considers not only data, but also logical
dependencies [2]. However, it cannot express the action of repetitive execution. Boundary
testing can find a number of errors through control input or output boundary value, but
it needs a long test experience [3]. All functional test methods have limitations: there are
loopholes and redundant testing untested. And cost of structural testing is very large.

Program execution path is closely associated with the test cases. By designed cases,
Shan et al. [4] put forward dynamic method to test target program and transform judg-
ment statements to Boolean assignment statements. However, it cannot cover all execu-
tion paths. Chernak [5] stressed the evaluation of effectiveness of test case, but he did
not consider other monitoring information, such as test coverage. Zhang and Gong [6]
used search space method to reduce test data for path analysis. In process of path se-
lection, artificial analysis method is used. On the contrary, static analysis can obtain all
solutions of test cases. Symbolic execution is the most commonly used method of static
analysis. It introduced symbolic into program input to build constraint system to detect
the symbolic execution. However, symbolic execution cannot be used to analyze the loop
variable and array table structure accurately [7]. King [8] first introduced method of
symbolic execution to debugging process, and the experimental results show that method

323



324 H. HE, Y. LIU, J. DONG, J. REN, H. WU AND Y. LI

for debugging sequential execution of program can achieve better effect. Combined with
symbolic execution, Young and Taylor [9] proposed a method for detecting program con-
currency. Taylor algorithm was used to generate a group program flow graph, and then
symbolic execution path was expressed by path expression to detect deadlock in program.
However, the above methods are sensitive for path.

From the perspective of data mining, each path of software execution can be considered
as a sequence [10]. Sequential pattern mining was first proposed by Agrawal and Srikant
[11], and they put forward the Apriori algorithm to find frequent itemsets in association
rules. Based on the Apriori algorithm, three kinds of improved algorithm [12] were pre-
sented, which are Apriori All, Apriori Some, Dynamic Some. They improved efficiency
of Apriori algorithm. However, these algorithms must scan database many times. Thus,
their time and space costs are very large. Therefore, Han et al. proposed a FP-Growth
algorithm based on frequent pattern tree. In SPADE [13], equivalence classes were put
forward to carry on some simple connection to replace multiple scanning databases. Al-
though SPADE can greatly improve time efficiency, a lot of candidate sets would be
generated. The similar execution path often appeared in high frequent degree candidate
sets [14], so we can filter useless candidate sets with low frequent degree to reduce the
input.

In this paper, we propose a novel approach to mine software similar execution paths.
First we transform called function nodes in the software dynamic execution process as rank
sequence to establish SNRM. Then, we put forward the algorithm to get software execution
sequence. Finally, we use Exclusive Nor Operation to compute similarity between patterns
to obtain similar execution paths.

The rest of this paper is organized as follows. Section 2 introduces definitions and
constructs software node rank model. In Section 3, a method to find similar execution
paths is described. The experimental results on open source software are given in Section
4. Finally we conclude this paper.

2. Preliminaries.

2.1. Definitions. In the software dynamic execution process, software function calls can
be seen as sequences.

Definition 2.1. Execution sequence (ES). Execution sequence is defined as S < Si, Si+1,
. . . , Sj >, Si is an event of S and it is expressed as a triple (Fname, Faddr, Flg), where
Fname represents the function call name, Faddr represents the memory address of the
calling function, if a function starts executing, Flg is E, while the function exits, Flg is X.

Sequence pattern (SP) is a fragment of sequence S defined as SP < Sn, . . . , Sm >, where
Sn.Flg = E, Sn.Addr = Sm.Addr, Sn.Fname = Sm.Fname, Sm.Flg = X. That is to say,
Sn and Sm are the same node. Therefore, SP begins to call Sn and ends to exit Sn.

Definition 2.2. Mapping function F (V → I). F (V → I) is a mapping function. V
represents node in software execution sequence. The I is an increasing integer from 0 to
N. N is maximum value for node contained by the software system.

Definition 2.3. Characteristic sequence value (CSV). CSV is a sequence composed of 1
or 0 which represents functions’ status in executing process.

The size of CSV is the number of function nodes contained in the software. In S each
bit represents a node, if corresponding node exists in the execution sequence, the bit of
CSV is 1; otherwise it is 0.

Definition 2.4. Sequence similarity.
Sequence similarity is defined as follows.

Sim(Spa, Spb) =
|Spa ⊙ Spb|

|S|
(1)



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 325

Exclusive Nor Operation (XNOR) is denoted by ⊙. Spa and Spb represent different se-
quences, |Spa ⊙ Spb| says the number of 1 in the results after Exclusive Nor Operation
for Spa and Spb, and S means the size of CSV. The value of Sim(Spa,Spb) should be less
than 1. The higher Sim value is, the more similar sequences are.

2.2. Software node rank model constructing. First we get the value of N which is
the number of nodes obtained by traversing overall the software. At the same time, every
node will be given an initial value as the node label. The Label I is an incremental integer,
thus the mapping function F (V → I) is also generated, and the algorithm is described as
follows.

In Algorithm 1, line 1 to line 4 traverses nodes to establish the mapping F (V → I).
Line 5 shows initialization of the CSV. Through the pretreatment function node of the
software system, we get the mapping function F and CSV on line 6.

Algorithm 1 SNRM Constructing

Input: Nodes generated by software execution process
Output: The mapping function F and characteristic sequence value (CSV)
1: Given a global variable I
2: The initialization of I is 0
3: for each node set I

if (I is 0)
Set I = 1;

else I++;
4: end for
5: initialize CSV, the size of CSV is I;
6: return F, CSV

3. Approach to Mine Similar Execution Paths.

3.1. Sequence generating and repetitive pattern eliminating. The initial data is
generated in software execution process. It only contains function’s address in memory
with entrance-exit flag. At this phase, we add corresponding function name to function
address in software execution process, and sequence unit as triple (Fname, Faddr, Flg)
will be produced.

Due to the complexity of software execution, software execution sequence is very com-
plex. Because of cycle in the function call process, a function would appear 10 times
circulation as 10000 calls. Therefore, if repetitive patterns are eliminated, time and space
efficiency in analysis process will be improved.

Algorithm 2 has two procedures. Line 1 to line 3 shows how to generate sequence of
execution. The return of the sequence of S contained three tuples (Fname, Faddr, Flg).
Line 4 to line 10 is to search out all sequence fragment of software execution sequence.
Then, Line 11 to line 13 will make clear the pseudo code for eliminating repetitive sequence
fragment.

Algorithm will add segments in stack which appears first time and other segments of
repetitive sequence will be deleted.

3.2. Reduced sequential patterns producing. In Algorithm 2, we get software exe-
cution sequence after eliminating repetition.

We will convert function addresses to called function nodes; thus, software pattern set
of function calls will be produced. In Algorithm 3, line 1 to line 9 judges whether sequence
between two events in RSP is a pattern or not, and then it will be stored in PS. We can
get pattern set PS on line 10.



326 H. HE, Y. LIU, J. DONG, J. REN, H. WU AND Y. LI

Algorithm 2 Sequence generating and eliminating repetitive patterns

Input: execution sequence (ES), event Si with Flg and Addr
Output: Reduced Sequential Pattern RSP
1: Sort different and non-redundant events from ES and store them in Addr Stack
2: for each event Si in ES do

if (AddrStack exists Si.Addr)
Store (Si.Flg, Si.Addr, addr to function (Si)) in S;

3: for each Si in S do
if (Si.Flg = = ‘E’)

4: for each Sj in S do
if (Sj.Flg = = ‘X’ and Si.Fname = = Sj.Fname)

Replace (Pi, P (Si, Sj)) in S’;
break;

5: end if
6: end for
7: end if
8: end for
9: end if

10: end for
11: for each Pi in S’ do

if(exists i consecutive pattern Pi in S’)
retain P1;

then delete other P in S’, until S’ is stable;
Replace (event sequence, each P in S’);

then RSP = S’;
12: end if
13: end for
14: return RSP

Algorithm 3 Software sequential pattern mining

Input: Reduced Sequential Pattern RSP
Output: Pattern Set PS
1: for each event RSP do
2: if (event.Flg = = ‘E’)
3: for each other event in RSP do
4: if (event’.Flg = = ‘X’) and (P is a pattern and P/PS)
5: PS.push (P);

event = next event;
6: end if
7: end for
8: end if
9: end for

10: return PS

3.3. Similar execution path finding. After sequential pattern mining, we get patterns
of software execution sequence. Then similarity is calculated based on the software pattern
sets, and the calculation consists of three steps as below.

Step1. Find the corresponding value of the execution sequence mapping software node
rank model.

Step2. Get the characteristic sequence values (CSV) of every execution sequence, and
the size of CSV.



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 327

Step3. Calculate the similarity using the XNOR respectively.
For instance, assume that P1 = A, B, C, G, H, P2 = A, B, D, E, F, G, H, P3 = A, B,

C, D, E, F, G, where A, B, C, D, E, F, G, H are patterns.
First, we find out P1, P2 and P3 corresponding value from SNRM.

Table 1. Software node rank model for example

node A, B, C, D, E, F, G, H
value 1, 2, 3, 4, 5, 6, 7, 8

In software node rank model, we can get the rank of each node: (A → 1), (B → 2), (C
→ 3), (D → 4), (E → 5), (F → 6), (G → 7), (H → 8).

Second, we get Sp1 = (11100011), Sp2 = (11011111), Sp3 = (0111111), and the size
of CSV is |S| = 8.

Third, the similarity between Spa and Spb is Sim(Sp1, Sp2) = (|11100011⊙11011111|)
/8 = 4/8, Sim(Sp2, Sp3) = (|11011111⊙11111110|)/8 = 6/8, Sim(Sp1, Sp3) = (|11100011⊙
11111110|) /8 = 4/8. We assume the threshold is 0.75. Therefore, Sp2 and Sp3 will be
merged.

4. Experiment and Analysis. In this section, we test algorithms on two open source
software coded in C or C++, including C program analysis tool Cflow for the relationship
of function calls, and a free software GNU file compression program Gzip. On Linux oper-
ating system, GCC is used to recompile them by adding debug information, to gather the
information of program traces automatically and obtain the software execution sequence.
Here, we select five test cases to perform Cflow and Gzip respectively. In each trial, we
transform software execution process as pattern sequences and eliminate repetitive pat-
terns. We test cases five times on each software. Therefore, five pattern collections can be
obtained. Tables 2 and 3 respectively show Cflow and Gzip’s software node rank model.

In Tables 2 and 3 we can see that every node in Cflow and Gzip corresponds to an
integer, and the integer is node order in sequence table. First nodes in execution sequence
are obtained, and then corresponding binary sequences are generated.

Table 2. The SNRM of Cflow

Node Value
main 1

cregister output 2
sourcerc 3
parse rc 4
parse opt 5
add name 6

append to list 7
alloc cons 8

alloc cons from 9
. . . . . .

Table 3. The SNRM of Gzip

Node Value
main 1

treat file 2
open input file 3

build tree 4
zip 5

ct init 6
gen codes 7
file read 8

read buffer 9
. . . . . .

Figure 1 describes trend comparison between lengths of original software execution
sequence and lengths of Reduced Sequential pattern (RSP) for Cflow and Gzip in five ex-
periments respectively. In Figure 1(a), with the increasing of software execution sequence
length, lengths of RSP also show growing tendency, but growth rate is relatively small.
By the same token, in Figure 1(b), with the increasing of software execution sequence
length, amplitude of variation length of RSP is very small.



328 H. HE, Y. LIU, J. DONG, J. REN, H. WU AND Y. LI

(a) Number of codes for Cflow (b) Number of codes for Gzip

Figure 1. The number of codes of Cflow and Gzip

0 2 4 6
10

11

12

13

14

15

16

17

18

19

20

N
um

be
r o

f P
at

te
rn

s

Experiment No of Cflow

 Number of Patterns

(a) Number of patterns for Cflow

0 2 4 6
0

1

2

3

4

5

6

7

8

9

10

N
um

be
r o

f P
at

te
rn

s

Experiment No of Gzip

 Number of Patterns

(b) Number of patterns for Gzip

Figure 2. The number of patterns of Cflow and Gzip

Table 4. The number of patterns in 5 experiments for Cflow and Gzip

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
Cflow 15 16 17 17 16
Gzip 5 4 5 5 6

Figure 2 describes trend comparison for lengths of pattern sets (PS) for Cflow and Gzip
in five experiments respectively. In Figure 2, we see that with the increase of software
execution sequence length, changes of patterns are small for both Cflow and Gzip.

Table 4 shows the number of patterns in different pattern sets obtained by 5 tests on
Cflow and Gzip. From the results we can see that changes of the number of sequence
patterns are very small. Table 5 and Table 6 show the 5 test results of S(N) between
Cflow and Gzip, where S denotes the similarity and N indicates the number of identical
sequence in patterns.

Table 5 and Table 6 show similarities between sequence patterns obtained in 5 experi-
ment results of Cflow and Gzip. Table 5 shows that range of similarity for Cflow is from
0.65 to 1. Table 6 shows range similarity for Gzip. In experiments, we set threshold as



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 329

Table 5. The similarity of patterns for Cflow

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
Exp 1 1.00(15)
Exp 1 0.71(12) 1.00(16)
Exp 1 0.76(13) 0.76(13) 1.00(17)
Exp 1 0.71(12) 0.76(13) 0.82(14) 1.00(17)
Exp 1 0.65(11) 0.71(12) 0.76(13) 0.71(12) 1.00(16)

Table 6. The similarity of patterns for Gzip

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
Exp 1 1.00(5)
Exp 1 0.60(3) 1.00(4)
Exp 1 0.80(4) 0.60(3) 1.00(5)
Exp 1 0.60(3) 0.60(3) 0.60(3) 1.00(5)
Exp 1 0.80(4) 0.80(4) 0.80(4) 0.60(3) 1.00(6)

0.8, about 20% tests can be reduced for Cflow, and about 40% tests can be reduced for
Gzip.

5. Conclusions. In this paper, a novel approach is proposed to mine similar execution
path. First, it transforms called function nodes in software dynamic execution process as
rank sequences to construct SNRM. By F (V → I), each node is assigned an initial integer
to represent node order for function call. Then, in our eliminating repetitive algorithm,
we remove those repeated calls to optimize the structure of sequential patterns and re-
duce energy consumption of experimentation. Calculating similarity between sequences
in matching process by XNOR, we find that execution process for same software is basi-
cally same or similar. Therefore, according to proposed method, we can divide software
dynamic execution process into a number of stable patterns. And those stable patterns of-
ten represent similar execution paths. Through analysis of these stable software patterns,
we can merge those similar execution paths who meet threshold condition. Experiment
results show that it can facilitate us to reduce test case in software testing. In future
work, we aim to find the correlation relationship between nodes based on matching of
software sequence pattern. So that, combining the similarity between nodes and sequence
structures, we can more accurately find out similar execution path in software dynamic
execution process.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61170190, No. 61472341 and the Natural Science Foun-
dation of Hebei Province China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326. Authors also gratefully acknowledge the helpful comments and sugges-
tions of reviewers, which have improved the presentation.

REFERENCES

[1] K. Zhou, J. Feng, W. Lan et al., Cluster analysis of software testing paths based on complex networks,
Computer Engineering and Applications, vol.46, no.31, pp.72-76, 2010.

[2] J. Ye, A method to generate the most similar path set based on given failure path, IEEE International
Conference on Intelligent Computing & Intelligent Systems, pp.635-638, 2010.

[3] D. K. Sharma, R. K. Sharma, B. K. Kaushik and P. Kumar, Boundary scan based testing algorithm
to detect interconnect faults in printed circuit boards, Circuit World, vol.37, no.3, 1974.

[4] J. Shan, J. Wang and Z. C. Qi, Survey on path-wise automatic generation of test data, Acta Elec-
tronica Sinica, vol.32, no.1, pp.109-113, 2004.



330 H. HE, Y. LIU, J. DONG, J. REN, H. WU AND Y. LI

[5] Y. Chernak, Validating and improving test-case effectiveness, Software IEEE, vol.18, no.1, pp.81-86,
2001.

[6] Y. Zhang and D. W. Gong, Evolutionary generation of test data for path coverage based on automatic
reduction of search space, Acta Electronica Sinica, vol.40, no.5, pp.1011-1016, 2012.

[7] A. Saswat, C. S. Pǎsǎreanu and W. Visser, Symbolic execution with abstraction, International
Journal on Software Tools for Technology Transfer, vol.11, no.1, pp.53-67, 2009.

[8] J. C. King, Symbolic execution and program testing, Communications of the ACM, vol.19, no.7,
pp.385-394, 1976.

[9] M. Young and R. N. Taylor, Combining static concurrency analysis with symbolic execution, IEEE
Trans. Software Engineering, vol.14, no.19, pp.1499-1511, 1988.

[10] S. A. Ebad and M. A. Ahmed, Functionality-based software packaging using sequence diagrams,
Software Quality Journal, pp.1-29, 2014.

[11] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, Proc.of 1995 Int. Conf.
Data Engineering ICDE, Taipei, Taiwan, pp.3-14, 1995.

[12] R. Agrawal and R. Srikant, Mining sequential patterns: Generalizations and performance improve-
ments, Proc. of the 5th Int. Conf. Extending Database Technology, 1996.

[13] M. J. Zaki, Fast mining of sequential patterns in very large databases, Technical Report, vol.668,
1997.

[14] J. D. Ren, Y. F. Tian and H. T. He, Bitmap-based algorithm of mining approximate sequential
pattern in data stream, Journal of AISS, 2011.


