
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 2, February 2016 pp. 347–354

PERFORMANCE MEASUREMENT OF LOGGING SYSTEMS
IN INFRASTRUCTURE AS A SERVICE CLOUD

Winai Wongthai1,2 and Aad van Moorsel3

1Department of Computer Science and Information Technology
2Research Center for Academic Excellence in Nonlinear Analysis and Optimization

Faculty of Science
Naresuan University

Phitsanulok 65000, Thailand
winaiw@nu.ac.th

3School of Computing Science
Newcastle University

NE1 7RU, United Kingdom
aad.vanmoorsel@ncl.ac.uk

Received July 2015; accepted September 2015

Abstract. The cloud offers computational resources to customers, such as networking,
processing, and storage. Its flexibility and benefits of reducing IT costs are attractive to
many companies. However, the cloud also brings with it security concerns which affect
both cloud customers and providers. Accountability is one of the keys to mitigating risks
associated with cloud security. A logging system is an important feature in accountabil-
ity solutions to help in mitigating threats in the cloud. However, previous accountability
approaches with logging system solutions have not provided system performance measure-
ments. This paper provides these performance measurements for logging systems in the
cloud. This can be a basis for clarifying the ability of the systems in capturing logging
information. This clarification may be used as a guideline to efficiently and appropriately
design, implement, and deploy logging systems. We argue that more research is needed on
the topic of performance measurement of logging systems in complex and abstract cloud
environments, and encourage other researchers to participate in providing solutions to
meet these concerns. The result can be to truly enable logging systems to work in real
world cloud production systems.
Keywords: Cloud, IaaS, Accountability, Logging system, Performance measurement

1. Introduction. The cloud offers computational resources to customers, such as net-
working, processing, and storage [1]. Its flexibility and benefit of reducing IT costs are
attractive to many companies [2]. It is arguably the future of computing and can po-
tentially transform the IT industry in a wide variety of application areas [3]. This paper
discusses only Infrastructure as a Service (IaaS) cloud model. IaaS is increasingly de-
ployed in many areas such as in the remote provision of medical services [4]. Usually,
customers need to upload their related files to IaaS such as in [4].

IaaS provides a base on which to build other cloud models including Platform as a
Service (PaaS) or Software as a Service (SaaS) [5]. However, cloud security is one of five
of the most major cybersecurity market trends which will define the investment of firms’
cybersecurity budgets for 2015 [6]. The National Security Agency or NSA [7] also states
that the complexity of security is much higher in a cloud environment where the data is
distributed over a larger area and a greater number of devices. The Top Threats to Cloud
Computing Report [8] by the Cloud Security Alliance or CSA illustrates seven examples
of cloud security threats.

Accountability can be keys to mitigating the risks associated with the CSA top threats.
Regarding accountability in the cloud, [3] argues that cloud behaviours can be inspected

347



348 W. WONGTHAI AND A. VAN MOORSEL

by any party. Wongthai et al. [9] argues that logging systems can be an important
feature in accountability solutions to mitigate the top threats. They also state that a
logging system is composed of logging processes and log files. A logging process focuses
on logging-related tasks, and log files store contents produced by these processes. However,
previous accountability with logging system solutions [1, 9, 10, 11, 12] are provided without
system’s performance measurement or testing.

This paper provides performance measurement of logging systems. [13] argue that at
the top level a key to dealing with one or more risks related to expense, opportunity
costs, continuity, and/or corporate reputation is performance testing. Molyneaux [14]
states that performance testing is a critical factor of the software development life cycle
(SDLC). He also argues that non-performant applications normally do not deliver their
intended profit to a company organization, thus, these applications make a net amount
of time and capital, and a fall of credit from the application users. Then, they cannot be
counted as reliable assets [14].

[15] states that software measurement requires a lot of practical advices to build upon
experiences and to stop repeating failure. Ideally, effort and time commitments required
for the deployment of monitoring and evaluation software (e.g., logging systems) for In-
ternet applications should be minimal, even in the ever changing, dynamically growing,
and continuously evolving behavior of Internet-based services [16]. The performance mea-
surement can be one of the practical guidances that may minimize the effort and time
commitments. Minimizing the commitments benefits the development of rapid logging
systems which is an important aspect of the development of logging systems in the cloud,
as discussed by [9]. Cloud architectures are more complex and abstract than a traditional
client server model [7].

We argue that more research is needed on the topic of performance measurement of
logging systems in complex and abstract cloud environments as also argued by [9]. Appli-
cation performance measurement needs key performance indicators or KPIs that include
availability, response time, throughput, and capacity [14]. The response time KPI is the
amount of time it takes for the application to respond to a user request [14]. We dis-
cuss only the response time KPI as an example of performance measurement KPIs to
encourage logging system development participants be concerned with all the system’s
KPIs.

Summary of contributions: The first contribution is the identification, classifica-
tion and discussions of concerns in performance measurement of logging systems in the
cloud. To the best of our knowledge, these discussions have not yet been described in
the literature. The second contribution is the design and implementation of the perfor-
mance measurement of a logging system in complex IaaS environments. The third and
main contribution encompasses the results from the performance measurement activity
and analysis and discussions of these results.

All these contributions can be a basis for clarifying the ability of logging systems in cap-
turing the logged information. This clarification may be used as a guideline to efficiently
and appropriately design, implement, and deploy logging systems. For example, when
building a logging system, the measurement results in this paper could assist developers
to achieve the correct and appropriate design of the logging system with minimal effort
and time commitments. As a result, this can truly enable the logging systems to work in
real world cloud production systems.

The remainder of this paper is as follows. Section 2 discusses logging systems to mitigate
the risks associated with the threats and the performance concerns of the systems in the
cloud. Then, Section 3 states the aim of the performance measurement and the experiment
sets. Section 4 describes performance measurement environment. Then, Section 5 explains
experiment design and running in dom0 and domU. Section 6 gives the result and its
discussion. Finally, Section 7 provides a summary and future research directions.



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 349

2. Background.

2.1. The proposed logging system to mitigate risks associated with the CSA
threats in IaaS. This system is in our previous work [1]. Its goal is to mitigate risks as-
sociated with CSA threat number one (malicious activities performed in cloud customer’s
virtual machines/VMs or domUs) that can affect the security of both cloud customers
and providers. Figure 1 shows the context of a domU for this system’s implementation.
In the figure, Alice rents a Linux domU and has a critical file (s.txt) in diskU (domU’s
virtual disk). Critical files are files in diskU and owned by customers (domU’s owners) [1].
These files can be any file type, such as text, executable, or database files. They are the
customers’ asset and valuable for their businesses [1]. Thus, the customers do not want
anyone to access these files apart from themselves and their authenticated users, and do
not want loss or leakage of the files [1]. In the figure, read application (in the rectangle
in user level) is an appU or an application that runs inside domU. The name ‘read’ is
the appU’s name and also the process name of the appU. Alice can run this application
to read s.txt (the dot-arrow line with a number 2). Read mem (the ellipse in memU or
a virtual main memory of domU) is the memory space of this read appU/process. This
memory space holds all information we need to record. We call it history of a critical file
which includes file name of s.txt, a process Id and a process name of read appU, and an
owner Id of read process.

Figure 1. The system architecture of the proposed logging system

The aim of the proposed logging system in [1] is to record this history information,
and then store it in a log file. The information can be evidence to enhance accountability
in IaaS [1]. Main components of the proposed system in Figure 1 are logger, logging
process (P1)/libVMI [17], and F3 as a log file. LibVMI is a C library that can read the
memory space (read mem) in memU from domU. From the figure, step 1’: the logger
(in dom0 user level) is an app0 that calls libVMI to access memU (step 2’) to get the
information in read mem such as a file name of s.txt, as discussed above. Step 3’: the
logger writes the information into F3.

2.2. Performance concerns of logging systems in the cloud. Measuring the perfor-
mance of logging systems, we consider two main performance concerns of logging systems
in the cloud: performance concerns of dom0 and of domUs. Firstly, we consider three
factors of the performance concerns of dom0. The first factor is accuracy of the logging
tasks. This is the accuracy of the logging tasks in dom0 in accessing the volatile memory
in domU. In the context of logging system permanence measurement in the cloud, we
consider this factor as a response time KPI. This paper presents only the measurement
of this factor. Section 3 to Section 6 provide details of the accuracy of our proposed



350 W. WONGTHAI AND A. VAN MOORSEL

logging system (Figure 1), how to measure it, the results, and discussions. The second
one is log file size. [18] states that log files can grow at a relatively higher rate. They also
argue that this issue may be mitigated by tiered storage and archival, de-duplication and
summarization techniques. [19] also states that present hard disk capacities are measured
in terabytes; thus, this should be a solution to the log file size explosion problem.

The last factor is the performance impact that is measured as a reduction in performance
of dom0 caused by the logging systems. For example, this measurement can be achieved
by measuring how much CPU of a machine is consumed by the logger process to achieve
logging tasks, compared to a machine that does not deploy the logging systems. This
measurement should be done when the full implementation of a logging system is ready,
or after the accuracy of the logging processes in a particular logging system satisfies the
accuracy requirement of the system. We experiment on only the measurement of the
accuracy of the logging process in this paper. Secondly, performance concerns of domUs,
a system need to access the main memory of domUs or memU. This may lead to a
reduction in performance of domUs caused by the logging systems. Our proposed logging
system reuses libVMI [17]. This tool imposes a minimal performance overhead to the
target domU memory [12]. Thus, we do not measure this reduction.

3. The Aim of the Performance Measurement and the Experiment Sets. The
aim of the measurement is to guarantee the proposed logging system (Figure 1) will yield
100% accuracy in capturing the information from memU in domU; how many milliseconds
(ms) the read application or appU needs to be in memU after finishing reading a file such
as s.txt before closing the file. The answer can be interpreted as that the proposed
system in dom0 yields 100% accuracy in capturing the log information if an application
in domU accesses a file for at least x ms. We consider this accuracy as a response time
KPI because this KPI is the amount of time it takes for an application (the proposed
system) to response to a user request. For experiment sets to calculate the accuracy, one
set of experiments is as follows. (i) We set a particular sleeping time such as 80 ms for
a read application after it finishes reading a file and before it closes the file. (ii) The
read application will be run 1000 times to perform step (i). Then, (iii) the proposed
system needs to capture log information (a file name string of a file that is read by read
application) from all 1000 runs of the read application.

During a particular run of the read application to read s.txt, if the proposed system
captures (from memU) the correct file name or the string ‘s.txt’ that has been read by this
application in this particular run, this capture is called a ‘hit’, otherwise a ‘miss’. When a
read application is run for 1000 times and the proposed system needs to capture all these
1000 times, then we can count a number of hits between 0 and 1000. For each experiment
set or steps (i) to (iii), the accuracy (in percentage) is calculated by the number of hits
divided by 10. Thus, the accuracy ranges from 0% to 100%. We run each experiment
set for 10 times, then calculate the average of the accuracy of this experiment set. Thus,
the average is calculated by the summation of the accuracy of each experiment set (in
percentage) from the first time to the tenth time divided by 10.

4. Performance Measurement Environment. Firstly, application components, we
use the same set of experiment environments as ones in the implementation of the proposed
logging systems or Figure 1. In the figure, libVMI can obtain the names and IDs of all
running processes in a task struct circular list by accessing memU of a target domU.
Each task struct contains numerous variables to keep track of a process in the memory
when it is executed by the CPU [20]. Then, the logger repetitively calls libVMI in a
loop to check whether the list contains a process name called ‘read’ or not. However,
this paper assumes that Alice runs read appU 1000 times separately, and each time
the application reads s.txt. Ideally, the goal of the logger is that it has to capture the



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 351

information of these 1000 times of read appU activities. Secondly, hardware components,
the experimental environment comprised a single physical machine as hw0. Its hardware
configuration includes an Intel Core 2 Quad CPU Q9400 @ 2.66GHz x 4 (64-bit) CPU and
2.7 GiB of main memory. Hw0 consisted of hypervisor that used Xen 4.1.4 with a Fedora
16 dom0 running a 64-bit Linux kernel 3.6.11-4. Alice’s domU is running a 64-bit Linux
kernel 3.6.11-4 for Fedora 16. It consisted of 989.7 MiB of main memory. Networking of
both dom0 and domU is disconnected.

5. Experiment Design and Running.

5.1. Experiment design for domU. Firstly, setting up, Section 2 discussed the context
of a domU in the implementation, see Figure 1 and the aim of the proposed system. DomU
context and the aim of the logger in this measurement are exactly the same as in Section
2. The section shows the proposed system’s architecture or Figure 1 which illustrates the
experiment set-up for the accuracy measurement of the proposed system. It also provides
an overview for both the logger and read application for this experiment. Secondly, read
application routines, from the figure, read application usual routines are: 1) open s.txt
file, 2) read the file and print the file’s contents to a screen, 3) close the file, and 4) be
terminated.

Lastly, read application routines with suspension and running the experiment, the
routines above are modified to add suspending execution for microsecond intervals. The
suspension is performed by C programming usleep function. The time intervals range from
0 to 100 ms. Read application routines with suspension are to: 1) open s.txt file, 2) read
the file and print the file’s contents to the screen, 3) suspend or sleep for x ms such
as x = 60, 4) close the file, and 5) be terminated. This is one run of a read application.
To run read application, all 1000 rounds of the read application with suspension run will
be triggered by read invoker which will be started only once, see Step 1 in the figure. This
is one experiment set and we run 10 experiment sets for each sleeping time.

5.2. Experiment design for dom0. Firstly, setting up, the logger in this experiment
has the same system architecture as the proposed system or Figure 1. In Figure 1, the
main components of the proposed system in this experiment are described in Section 2,
see Figure 1. The logger finds a read process in memU of the target domU by checking
(using a loop) from the beginning to the end of the linked list of all running processes in
the domU. Secondly, for this measurement we modified the logger in Figure 1 to be able
to capture the log information of each run of read application that will be run for 1000
times. The logger in dom0 is run before read invoker in domU as a monitoring tool. It is
run only once to capture the log information from each one of all 1000 read application
runs.

5.3. Running the experiment to collect accuracy of the logger. Section 5.1 to
5.2 have already discussed the design and set-up of the logger, and read and read invoker
applications to perform the accuracy measurement. Section 5.3 then explains how to
collect hits and misses. To perform the experiment, the logger (Figure 2, the black

Figure 2. To run the logger in dom0

Figure 3. To run the read invoker application in domU



352 W. WONGTHAI AND A. VAN MOORSEL

highlight) will be started before read invoker (Figure 3, the black highlight), and this is
one experiment set.

To collect the average accuracy of a particular sleep time such as 100 ms, we run each
experiment set for 10 times for each sleeping time setting, and then the average accuracy
from these ten times is calculated and collected. The sleeping time intervals are set to
vary from 100 to 0 to find the least time (in milliseconds) that the read application needs
to be slept after finishing reading a file and before closing the file. This will be discussed
in Section 6, along with the results.

6. Results for Accuracy of the Proposed System and Discussions.

6.1. The results. The results show that the optimum sleep time is 65 ms for the read
application. This implies that the accuracy of the proposed system is 100% when any
application in domU accesses (opening a file until closing the file) a file for at least 65
ms, see the graph in Figure 4. From the graph, when the sleeping times are from 80 to
65 ms (x-axis), the accuracy is 100% (y-axis). However, the first time that the accuracy
is less than 100% (99.98%) is when the sleeping time is 64 ms. Thus, the minimum least
sleeping time for the accuracy to be 100% is 65 ms, see the dotted line. The accuracy
decreases as the sleeping time moves from 64 until 59 ms. The accuracy in this interval is
only marginally different. It decreases from 99.99%, to 99.95%. To improve the accuracy,
the logger process can be run in dedicated CPUs. If we double the CPU number, the
sleeping time needed to get 100% accuracy should be decreased by half such as from 65
ms to 32.5 ms.

Figure 4. A graph showing the accuracy of the proposed logging system
in capturing log information from domU

6.2. Decreasing trends of the accuracy of the logger. The section presents the
decreasing trends of the accuracy when the sleeping time is set from 100 to 0 ms with
the reduction of 10 ms each time. These trends can be interpreted as how the accuracy
is dropped after 100% and at what sleeping time the logger does not work and is halted.
In order to present the decreasing trends of the accuracy, we set up the sleeping time
intervals from 100 to 0 ms with the reduction of 10 ms for each experiment set. Figure 5
presents the decreasing trends of the accuracy for the proposed system in capturing log
information from domU.



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 353

Figure 5. A graph showing the decreasing trend of the accuracy for the
proposed logging system in capturing log information from domU

From the graph, the logger yields 100% of the accuracy when the read application
sleeping time is from 100 to 70 ms. The accuracy is 99.98%, 99.99%, and, 93.98% when
the sleeping times are 60, 50, and 40 ms respectively. The accuracy sharply decreases
from 93.98% to 31.75% (see the dotted lines) when the sleeping time is changed from 40
to 30 ms. From the experiment, starting from the 30 ms until 0 millisecond, the logger
seems to be halted. This may be because that the loop in the logger, used to traverse the
processes list, is not fast enough. Thus, it should be possible to increase the speed of the
loop by running the logger on dedicated CPUs in a multi-core system.

7. Summary. This paper provides the performance measurements of our proposed log-
ging system in terms of its accuracy in capturing logging information from a target virtual
machine or domU. The system has 100% accuracy when an application in a target domU
accesses a file for at least 65 ms. To improve the accuracy, the logger process can be
run via dedicated CPUs. A benchmark of accessing times to access a file can be how
many ms that an application spends to access, open, read, write, and close its database
file. This benchmark can be difficult to measure. This may be because the benchmark
measurement can be heavily related to the hardware specifics of the domUs which can
be located in different machines. Hardware specific qualities of these machines can differ
from machine to machine. This specification can be the storage medium of the s.txt files;
a solid state drive or SSD, or hard disk drive or HDD; the amount of main memory; the
system load; size of the file; the file system in use (e.g., Linux third extended file system
or ext3, or Microsoft Windows NTFS), CPU speed and so on.

We did not find such benchmark to compare with the minimum sleeping time for the
measurement result which is 65 ms. Thus, we cannot compare the results to a benchmark
of the average time taken for an application to access a file. However, the results in this
paper can be a basis to clarify the ability of the logger in capturing the log information.
This clarification can be used as a guideline to efficiently and appropriately design, im-
plement, and deploy logging systems in the cloud. As a result, this can truly enable the
logging systems to work in real world production systems. Lastly future research direc-
tions can be i) to implement the approaches of the dedicated CPUs and doubling the CPU



354 W. WONGTHAI AND A. VAN MOORSEL

number and ii) performance measurement of logging systems in the cloud environments
regarding the other KPIs including availability, throughput, and capacity.

Acknowledgment. Many thanks go to Mr. Roy Morien of the Naresuan University
Language Center for his editing assistance and advice on English expression in this doc-
ument.

REFERENCES

[1] W. Wongthai, F. Rocha and A. van Moorsel, Logging solutions to mitigate risks associated with
threats in infrastructure as a service cloud, International Conference on Cloud Computing and Big
Data (CloudCom-Asia), pp.163-170, 2013.

[2] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka and J. Molina, Controlling data in
the cloud: Outsourcing computation without outsourcing control, Proc. of the 2009 ACM Workshop
on Cloud Computing Security, pp.85-90, 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica and M. Zaharia, A view of cloud computing, Commun. ACM, vol.53, pp.50-58,
2010.

[4] R. de Paris, FReMI – A Middleware to Handle Molecular Docking Simulations of Fully-Flexible
Receptor Model in HPC Environment, Master Thesis, 2012.

[5] W. Dawoud, I. Takouna and C. Meinel, Infrastructure as a service security: Challenges and solutions,
International Conference on Informatics and Systems, pp.1-8, 2010.

[6] Y. Leitersdorf and O. Schreiber, Cybersecurity hindsight and a look ahead at 2015, TechCrunch,
2014.

[7] The National Security Agency (NSA), Cloud security considerations, Tech. Rep., 2013.
[8] CSA, Top threats to cloud computing, version 1.0, Tech. Rep., 2010.
[9] W. Wongthai, F. L. Rocha and A. van Moorsel, A generic logging template for infrastructure as a

service cloud, Proc. of the 27th International Conference on Advanced Information Networking and
Applications Workshops, pp.1153-1160, 2013.

[10] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang and B. S. Lee,
TrustCloud: A framework for accountability and trust in cloud computing, Tech. Rep., pp.584-588,
2011.

[11] P. Macko, M. Chiarini and M. Seltzer, Collecting provenance via the Xen hypervisor, The 3rd
USENIX Workshop on the Theory and Practice of Provenance, 2011.

[12] B. Payne, M. de Carbone and W. Lee, Secure and flexible monitoring of virtual machines, Proc. of
the Annual Computer Security Applications Conference, pp.385-397, 2007.

[13] J. Meier, C. Farre, P. Bansode, S. Barber and D. Rea, Performance Testing Guidance for Web
Applications: Patterns & Practices, Microsoft Press, 2007.

[14] I. Molyneaux, The Art of Application Performance Testing: From Strategy to Tools, 2nd Editoin,
O’Reilly Media, 2014.

[15] C. Ebert, R. Dumke, M. Bundschuh and A. Schmietendorf, Best Practices in Software Measurement:
How to Use Metrics to Improve Project and Process Performance, 2005.

[16] S. E. Parkin and G. Morgan, Toward reusable SLA monitoring capabilities, Software Practice and
Experience, vol.42, no.3, pp.261-280, 2012.

[17] B. Payne, About the VMI tools project, Google Project Hosting, 2013.
[18] R. K. L. Ko, P. Jagadpramana and B. S. Lee, Flogger: A file-centric logger for monitoring file access

and transfers within cloud computing environments, Proc. of the 2011 IEEE the 10th International
Conference on Trust, Security and Privacy in Computing and Communications, pp.765-771, 2011.

[19] A. Haeberlen, P. Aditya, R. Rodrigues and P. Druschel, Accountable virtual machines, Proc. of the
USENIX Conference on Operating Systems Design and Implementation, 2010.

[20] R. Love, Linux Kernel Development, 3rd Edition, Addison-Wesley Professional, 2010.


