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Abstract. Deterioration of products, environmental changes, demand uncertainty, am-
ong with other factors require efficient strategies in order to prevent a set of negative
revenues to a company. For shaping a loss distribution popular functions managing risk,
namely value-at-risk (VaR) and conditional value-at-risk (CVaR) have been used. In
this paper, we employ linear programming (LP) techniques under cooperative game the-
ory framework to estimate the risk on a multi-period production planning problem. First,
a comparison between the traditional Shapley value and our results is made to analyze
the efficiency of our model. Further, a discussion of the strengths and limitations of the
proposed LP scheme follows a numerical illustration.
Keywords: Production planning, Shapley value, Linear programming, Risk, VaR,
CVaR

1. Introduction. Managers in every level of decision process are responsible for strate-
gical and efficient policies which requires consistent models in order to increase the profits
in a business. The concept on risk management is related to distinct perspectives. How-
ever, just as stated by [1], it is important before defining risk management to understand
the concept of risk. Risk combines both the uncertainty of outcomes and utility or benefit
of outcomes. Outcomes are summarized by the profit and loss statement (P&L), and
the uncertainty in profits is described by the distribution or density function which maps
the many possible realizations for the (P&L), with profits sometimes high and sometimes
low [1]. In their tutorial, [2] considers risk management as a procedure for shaping a loss
distribution, while [3] defines risk measure as a mapping from the set of random variables
representing the risk exposure to a real number. Though several innovations have been
proposed for measuring risks, value-at-risk (VaR), conditional value-at-risk (CVaR) also
known as tail conditional expectation and shortfall expectation (SE) are on the top of ap-
proaches accepted by practitioners [2, 3, 5, 9]. Despite its heavy application in engineering
and in financial sector, VaR is inferior to CVaR in optimization applications. However, a
close correspondence between both is found when using the same confidence level [4].

In this study, we aim to extend previous work [8] solving problems related to finan-
cial engineering, precisely n periods production planning problem. For this purpose, we
combined CVaR with cooperative game theory and linear programming (LP); players are
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interpreted as periods due to the correlation between game theory and production plan-
ning models. The game consists of finding Shapley values [7], understood as risk allocated
to each period, but avoiding the conventional formulation, and as research contribution,
we use an alternative equivalent Shapley value which is demonstrated through a numerical
example.

The remainder of the paper is organized as follows. Section 2 outlines VaR and CVaR as
the well-known approaches in estimating risk measures. In Section 3 a proposal for multi-
period production planning is presented, starting with a summary on coalitional game
theory, analyzing the correlation between cooperative games and production planning
and as well, and present an optimization model to calculate the Shapley values. Section 4
provides a numerical example and Section 5 concludes the paper with pointers to future
work.

2. An Overview on VaR and CVaR Risk Measure Approaches. Basic aspects
about VaR and CVaR are described in this section due to the objectives of this paper.
Thus, it cannot be perceived as a review regarding these two measure approaches. For
more details on the above subject, we refer readers to [2, 4] and the references therein.

Risk measure can be defined as a procedure for shaping a loss distribution, for instance
an investor’s risk profile. Value-at-risk (VaR), which is a percentile of a loss distribution
and conditional value-at-risk (CVaR) are among the few risk measure approaches mostly
accepted by practitioners. There is a close correspondence between CVaR and VaR, and
with the same confidence level, VaR is a lower bound for CVaR. In terms of optimization
applications CVaR is superior to VaR [2]. Consider X a loss random variable with the
cumulative distribution function Fx(z) = P{X ≥ z}.

Definition 2.1 (VaR). The VaR of X with confidence level α ∈]0, 1[ is

V aRα(X) = min{z|Fx(z) ≥ α} (1)

i.e., V aRα(X) is a lower α-percentile of X and is proportional to the standard deviation
if X is normally distributed, that is, X ∼ N(µ, σ2), then,

Fα(X) = F−1
x (α) = µ + k(α)σ, (2)

where

k(α) =
√

2erf−1(2α − 1) (3)

and

erf(z) =
2√
π

∫ z

0

e−x2

dt. (4)

Other characteristics of VaRα(X) include [2]:

• For discrete distributions, VaRα(X) is a nonconvex and discontinuous function of
the confidence level α.

• VaRα(X) is non-subadditive.
• VaR has many extrema for discrete, therefore, it is difficult to control or optimize

for nonnormal distributions.

Definition 2.2 (CVaR). CVaRα(X) equals the conditional expectation of X subject to
X ≥ V aRα(X) for random variables with continuous distribution. Formally,

CV aRα(X) = {E[X] s.t. X ≥ V aRα(X)}. (5)

The CVaR of X with α ∈]0, 1[ is the mean of the generalized α-tail distribution:

CV aRα(X) =

∫ ∞

−∞
z dFα

x (z) (6)
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where

Fα
x (z) =

{
0, for z < V aRα(X)
Fx(z)−α

1−α
, for z ≥ V aRα(X)

. (7)

CVaRα(X) is not equal to an average of outcomes greater than VaRα(X).

3. A Proposal for Multi-period Production Planning Problem. This section be-
gins by introducing basic concepts concerning cooperative game theory for being one of
the frameworks on which our proposed scheme is built. Its last part returns to CVaR
already described in Section 2 and ends with the computational issues regarding our
methodology.

3.1. Coalitional games with transferable utility (TU). A coalitional game on a
finite set of players is a pair (Ω, v) where Ω = {1, 2, . . . , n} is the set of players and
v : 2N → R is a real-valued (also called characteristic function) mapping with v(∅) = 0.
Any nonempty subset of Ω [6] (including Ω itself and all the one-element subsets) is called
a coalition. The characteristic function v(S), the worth of coalition S, represents the total
amount of transferable utility that members of S could earn without any help from the
players outside of S, i.e., the maximum sum utility payoffs that the members of coalition S
can guarantee themselves against the best offensive threat by the complementary coalition
N\S.

Definition 3.1 (Superadditivity). (Ω, v) is said to be superadditive if

v(S ∪ T ) ≥ v(S) + v(T ), if S ∩ T = ∅, ∀ S, T ⊂ Ω. (8)

Shapley value. Motivated by the need of a theory that would predict a unique
expected payoff allocation for every given coalitional game, the concept of Shapley value,
as a solution concept in cooperative game theory, was proposed by [7]. It considers the
relative importance of each player to the game in deciding the payoff to be allocated to
the players and is formally represented as

πi =
∑

H⊂Ω−{i}

|H|!(|Ω|! − |H|! − 1)!

|Ω|!
{v(H ∪ {i}) − v(H)} (9)

where, Ω denotes the set of players and H represents the coalition under study. [7]
demonstrated his theory through the following properties:

• Efficiency (Group rationality): players precisely distribute among themselves the

resources available to the grand coalition:
n∑

i=1

πi = v(Ω).

• Individual fairness (Individual rationality): every player gets at least as much as he
would have received without cooperation: πi ≥ v({i}), ∀i ∈ {1, 2, . . . , n}.

• Symmetry: if two players i and j are equivalent, then πi = πj.
• Additivity: if v1 and v2 are two games, then πi(v1 + v2) = πi(v1) + πi(v2).
• Null player: v(∅) = 0.

Usually, finding the characteristic function v(S) is a complex work, particularly in n-
person games, since the amount of coalitions players in the game have to build increases
exponentially according to the number of players, i.e., 2n − 1. Because of its importance
in terms of applications, this function has been an important topic for research and, as
result a lot of algorithms to support the computation of v(S) have been suggested. In this
study, we employ CVaR as the characteristic function and its computation is described
next.
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Let D = d1 + d2 +· · ·+ dn be the cumulative demand and α, the confidence level. The
CVaR is defined in Equation (10).

v(H) = CV aRH(1 − α) =
∑
i∈H

di +
∑
i∈H

∑
j∈H

σij
φ(z1−α)

1 − Φ(z1−α)
(10)

where,

z1−α =

V aRD(1 − α) −
∑
i∈H

di√∑
i∈H

∑
j∈H

σij

. (11)

Here, φ is the standard normal density, Φ denotes the cumulative function and σij are
the element of the variance-covariance matrix Σ shown in (12).

Σ =


ω2

1 ω2
1 · · · ω2

1

ω2
1 ω2

1 + ω2
2 · · · ω2

1 + ω2
1

...
...

. . .
...

ω2
1 ω2

1 + ω2
2 · · · ω2

1 + ω2
2 + · · · + ω2

n

 . (12)

Notice that CVaR is subadditive while – CVaR is a characteristic function observing the
superadditive property [3].

3.2. Relation between production planning and game theory. Game theory can
be applied to production planning problems. Table 1 summarizes the parallelism between
these two techniques. In our methodology, we use the corresponding second column to
perform the computations.

Table 1. Comparison between production planning and game theory

Game theory Production planning

i Player Period
S Coalition Set of periods

Characteristic
function

v − CVaR(1 − α) 1

πi Shapley value individual risk

The estimated demand can be represented as d = [d1, d2, . . . , dn], and is normally
distributed, i.e., d ∼ N(d̄, Σ), with d̄ denoting the expected demand.

For the planning process, we assume that there exists relation between production,
the inventory and Shapley value. The higher the expected demand is, the higher the
production volume will be as can be observed in the graphical illustration for n periods
production planning model presented in Figure 1 where S0 is the initial inventory and xi

the production volume. The expected demand d̄i is considered favorable and consequently,
uncertain risk can be avoided. In the graph, S̄i is the average inventory, di denotes
demand with normal distribution and is proportional to the variance, that is, N

(
d̄i, ωi

)
.

The inventory quantity Si at period i [5] is given by

Si = S0 +
i∑

t=1

xt −
i∑

t=1

dt (13)

di is a random variable so that Si becomes random variable and it is assumed to obey
an average d̄i and standard deviation ωi, where di, dj (i ̸= j) are independent each other
and ωi = σ × d̄i, where σ is the deviation of order. In this paper, following a previous
study [8], Shapley values were computed by using an alternative equivalent formulation
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Figure 1. Production planning for multi-period

which is an LP model. The model is described briefly next referring readers to [8] and
the references therein for more details.

Suppose a sample β from a data set, where xi and yi are the values of the referred
sample. One can find the error among the data using the following expression:

eβ = fβ(A, M ,v) = (ATMv − ATMAz)β (14)

where ( )β denotes the selection of the βth row value. So, the sum of all error functions
is given by E =

∑
β |eβ| using a multiple linear regression model which minimizes the

sum of the absolute values of the residuals. Equality (14) can be transformed into an
optimization problem in Equation (15).

Minimize ϵ (15)

Subject to ATMv + s+ − s− = ATMAz∑
d∈K

zβ(K, v) = v(K)

0 ≤ s+ ≤ ϵ, 0 ≤ s− ≤ ϵ

where s+ = [s+
1 , s+

2 , s+
3 , . . . , s+

n ]T and s− = [s−1 , s−2 , s−3 , . . . , s−n ]T denote the set of slack
variables; A is a matrix which observes the supperaditivity property; v is a column matrix
whose elements are the real values v(H) and M = (diag MΩ,s) obtained through Equation
(16) as follows.

MΩ,s =
1

Ω − 1
{Ω−2Cs−1}−1. (16)

In Equation (16), MΩ,s corresponds to a set of weights, Ω as defined previously indicates
the set of players and s denotes the number of elements in the coalition being estimated
(s ⊂ H). This can be visualized through the following example.

Example 3.1. Let (Ω, v) be a 3-person game with Ω = {1, 2, 3} the finite set of players,
so

z =

z1(Ω, v)
z2(Ω, v)
z3(Ω, v)

 , v =


v({1})
v({2})
v({3})

v({1, 2})
v({1, 3})
v({2, 3})

 (17)
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and

AT =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (18)

Computational issues. The process scheme described in this paper can be applied
through the following stepwise procedures:

Step 1: Define the confidence level 1 − α, the estimated demand di and initial
inventory S0.

Step 2: To determine the characteristic functions: Measure each player’s record.
Using Equation (10) the obtained solution is assigned as the characteristic function for
the corresponding players/coalitions.

Step 3: To determine the Shapley value: Compute the weights MΩ,s by employing
Equation (16). Using the characteristic function values of all coalitions and the weights,
Shapley value and error function are calculated by solving (15).

4. Numerical Example. Suppose a company desires to analyze its production in 5
periods. How can they estimate the risk distribution for each period?

Hence, it is a 5-person game, that is, Ω = {1, 2, 3, 4, 5}. Consider as prerequisites: initial
inventory S0 = 10, the estimated demand for each period is given by d = [10, 20, 24, 6, 12],
where the variance ω = 3 and the confidence level α = 0.1. Using Equation (10) the
coalitions’ characteristic functions v(H) were computed and are presented in Table 2.

Table 2. The coalitions’ characteristic functions v(H)

Coalitions v(H) = −CVaRH(1 − α) Coalitions v(H) = −CVaRH(1 − α)

v{∅} 0 v{123} 83.91695542
v{1} 17.99564266 v{124} 62.51854666
v{2} 31.30754629 v{125} 73.98257064
v{3} 37.84885933 v{134} 73.92263887
v{4} 21.99128532 v{135} 80.85219835
v{5} 29.87880051 v{145} 65.50288835
v{12} 47.87880051 v{234} 88.34575512
v{13} 53.58524469 v{235} 92.64063772
v{14} 37.15448205 v{245} 79.54657798
v{15} 44.61509258 v{345} 87.23018516
v{23} 67.98692798 v{1234} 103.7939385
v{24} 51.28444217 v{1235} 110.5178543
v{25} 58.51854666 v{1245} 94.62220772
v{34} 58.82869959 v{1345} 101.9327724
v{35} 65.91695542 v{2345} 116.229087
v{45} 50.96687924 v{12345} 131.297273

In Table 3 the Shapley values are shown. The first row contains the solution set using
Equation (9) and second row, those from Program (15). Through this solution one can
obtain information regarding the risk in each period. As expected both approaches present
the same results, i.e., the Shapley values for each period or player π1, π2, π3, π4 and π5

are respectively, 17.58, 15.13, 32.47, 26.38 and 39.73.
One can easily observe that Shapley’s efficiency (Group rationality) property is fulfilled,

that is, the overall sum of the values gives the same value for the grand coalition v(H) as
in Table 2.
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Table 3. Shapley values for the 5 periods

Methods Periods

π1 π2 π3 π4 π5 v{Ω}
Conventional Shapley value 17.58 15.13 32.47 26.38 39.73 131.30
LP model 17.58 15.13 32.47 26.38 39.73 131.30

In Table 4, we imposed some new constraints into the problem (15) in order to ana-
lyze the distribution of the risk among the periods. The problem was analyzed through
different cases as defined below.

• Case 1: π5 ≥ 3π1

• Case 2: π5 ≥ 48
• Case 3: π1 ≤ 10
• Case 4: π5 ≥ 3π2

• Case 5: π5 ≤ 35
• Case 6: π2 ≤ 6
• Case 7: π3 ≤ 20
• Case 8: π4 ≤ 12
• Case 9: π5 ≤ 24

Table 4. Constrained Shapley value indicating risk distribution among
the 5 periods

Cases ϵ′ π1 π2 π3 π4 π5 s+
1 s−

1 s+
2 s+

3 s−
3 s+

4 s+
5

Main 0.614 17.58 15.13 32.47 26.38 39.73 0.614 0 0.614 0.614 0 0.614 0.614
Case 1 2.948 14.02 14.51 31.98 28.71 42.07 0 2.948 0 0.121 0 2.948 2.948
Case 2 8.877 16.97 14.51 26.05 25.76 48.00 0 0 0 0 5.807 0 8.877
Case 3 6.970 10.00 14.51 31.86 28.83 46.09 0 6.970 0 0 0 3.068 6.970
Case 4 1.11 18.077 13.41 32.72 26.86 40.22 1.11 0 0 0 0 0 0
Case 5 3.13 16.97 14.44 35.00 25.76 39.12 0 0 0 0 0 0 0
Case 6 8.51 16.97 6.00 31.86 28.83 47.63 0 0 0 0 0 0 0
Case 7 11.86 16.97 14.51 20.00 37.62 42.19 0 0 0 0 0 0 0
Case 8 13.76 16.97 14.51 34.93 12.00 52.89 0 0 0 0 0 0 0
Case 9 15.12 16.97 14.51 34.93 40.88 24.00 0 0 0 0 0 0 0

The other slack variables are: s−2 = s−
4 = s−

5 = s+
6 = s−

6 = 0 (for all cases).
Now, we desire to estimate how much is the difference of the cost or risk for each period

as compared to the main case presented in Tables 3 and 4. The result of this process is
displayed in Table 5.

Subtracting the results from Table 4 we quantified the difference of the estimated de-
mand for each period, and this arithmetic is presented in Table 5. Moreover, the planning

Table 5. Differences between the estimated risk in the 5 periods

Cases ϵ′ 1 2 3 4 5 s+
1 s−

1 s+
2 s+

3 s−
3 s+

4 s+
5

Case 1 - Main 2.33 −3.56 −3.07 −0.49 2.33 2.33 −0.61 2.95 −0.61 −0.49 0 2.33 2.33
Case 2 - Main 8.26 −0.61 −0.61 −6.42 −0.61 8.27 −0.61 0 −0.61 −0.61 5.81 −0.61 8.26
Case 3 - Main 6.36 −7.58 −0.61 −0.61 2.46 6.36 −0.61 6.97 −0.61 −0.61 0 2.45 6.36
Case 4 - Main 0.49 −0.49 −4.18 0.24 0.49 0.49 0.50 0 −0.61 −0.61 0 −0.61 −0.61
Case 5 - Main 2.53 −0.61 −3.14 2.53 −0.61 −0.61 −0.61 0 −0.61 −0.61 0 −0.61 −0.61
Case 6 - Main 7.90 −0.61 −11.58 −0.61 2.46 7.90 −0.61 0 −0.61 −0.61 0 −0.61 −0.61
Case 7 - Main 11.24 −0.61 −3.07 −12.47 11.25 2.46 −0.61 0 −0.61 −0.61 0 −0.61 −0.61
Case 8 - Main 13.15 −0.61 −3.07 −2.46 −14.38 13.15 −0.61 0 −0.61 −0.61 0 −0.61 −0.61
Case 9 - Main 14.50 −6.61 −3.07 −2.46 14.51 −15.73 −0.61 0 −0.61 −0.61 0 −0.61 −0.61
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process, in this table, is explained as follows: one can predict a higher demand in the last
period while the estimated demand for other periods is expected to decrease considerably
since the corresponding Shapley value for the fifth period increases n times of the first
period (case 1); if the estimated demand is increased, for instance, 4 times in the last
period, we should expect a decreasing of the demand in the first and second periods and
as well as a significant fall off in the third period (case 2); in case 3, allocating the low-
est demand, 10, to the first period will have a positive impact on the last two periods in
terms of demand, i.e., 2.46 and 6.36, respectively. Hence, in general, positive or negative
impacts regarding demands and risks depend on the constraints the model is subject to,
and for this reason we consider our model to a Shapley constraint approach.

5. Concluding Remarks. Game theory is a strong tool to solve problems which require
strategic policies. As one solution concept, Shapley value can predict efficient decisions.
In this work we combined game theory, risk measure and linear programming techniques
to find the Shapley values in order to acquire information regarding risk in a multi-period
production planning environment. Our model used CVaR as characteristic function and
equivalent results were obtained employing the conventional Shapley value approach. For
n periods production planning problems, decision-makers can evaluate theirs strategies
according to several cases which imply to analyze the set of constraints in the optimization
model.

One of limitations of our model is the lack of an overall satisfaction of Shapley value
axioms which leads to a future direction in this work, that is, the consistency of the
constraints and as well as a strong response when dealing with data uncertainty.
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