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Abstract. In order to reduce the complexity of maximum likelihood (ML) detection
in differential spatial modulation (DSM) system, a low-complexity differential spatial
modulation (LC-DSM) detection method is proposed in this paper. The algorithm utilizes
the bit-padding concept at transmitter and divides the received signal matrix into signal
vectors at receiver. The simulation results show that LC-DSM algorithm achieves more
than 90% complexity reduction compared with DSM-ML proposed by Bian et al. and
50% compared with the algorithm proposed by Xiao et al. respectively. Meanwhile, it can
obtain the same bit error rate (BER) performance as the algorithm proposed by Xiao et
al. while signal noise ratio (SNR) is at medium and high region.
Keywords: Maximum likelihood detection, DSM, Low-complexity detection method,
Bit-padding, Wireless communication

1. Introduction. As a special MIMO (Multiple Input Multiple Output) transmit sche-
me, spatial modulation (SM) [1] can avoid inter-channel interference (ICI) and inter-
antenna synchronization (IAS). However, in high mobility scenarios, where the fading
channel changes rapidly compared with the symbol transmission rate, it is very difficult
and costly to obtain accurate Channel State Information (CSI) and the performance loss
will become serious without CSI. For this reason, differential modulation for space-time
shift keying (DSTSK) [2,3] was proposed. However, DSTSK needs to search exhaus-
tively the linear dispersion matrix and can only transmit one constellation symbol at
a time. Differential spatial modulation (DSM) [4,5] solves these two problems by con-
structing multiple-symbol matrix, but the complexity of the detection method increases
correspondingly. Then a low-complexity detector was proposed in [6]. It utilizes HL-ML
algorithm [7] to obtain the antenna indexes and the transmitted symbols. Although the
algorithm performs well and its complexity is independent of the size of constellation,
the complexity is still high, especially in the cases of larger number transmitting anten-
nas. This paper presents a low complexity differential detection algorithm. It utilizes
the concept called bit-padding at transmitter and divides the received signal matrix into
signal vectors which can make LC-ML detection algorithm [8] more easily to be applied.
Moreover, the computational complexity of the proposed algorithm is further reduced by
shrinking the channel matrix at receiver, while the performance remains almost the same
as DSM-ML and algorithm in [6] at medium and high SNR region.

The rest of the paper is organized as follows. In Section 2, we introduce the DSM
system model and its ML-optimal detection criterion. In Section 3, we present the LC-
DSM algorithm for DSM systems under M -PSK modulation. Section 4 compares the
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performance of the proposed algorithm with other two kinds of algorithms in terms of
simulation results, and gives computational analysis. Section 5 ends up the paper with
conclusions.

2. System Model. Consider an Nr × Nt differential spatial modulation system with
M -PSK modulation. The differential transmission process is as follows.

Step 1: map
⌊
logNt!

2

⌋
+ Nt logM

2 (⌊•⌋ means rounding a real number toward negative
infinity, and M is the size of constellation) bits into an Nt × Nt matrix X (there is one
and only one non-zero entry in any row and any column of X, which means that only one
antenna remains active at each time slot).

Step 2: compute the transmitted block St as follows: St = St−1Xt (Xt is the symbol
matrix X transmitted at time t).

Step 3: the receive signal Yt is expressed as

Yt = HtSt + Nt, (1)

where Yt, Ht, Nt represent Nr×Nt receive matrix, channel matrix, additive white Gaussian
noise with zero-mean and variance σ2 at time t respectively.

Step 4: according to [5], the optimal maximum-likelihood (ML) differential detector
can be derived as

X̂t = arg min
∀X∈Θ

∥Yt − Yt−1X∥2
F , (2)

where Θ is the set of Nt!M
Nt symbol matrices X.

3. Detection Algorithm. Since the complexity of ML detection increases linearly with
the number of transmit and receive antennas, and exponentially with the order of con-
stellation, the complexity of DSM with large-scale antennas is daunting. Considering this
problem, by using detective structure of ML, we take Yt−1 as channel matrix Ht. From
(1), we get (

l̂i, ŝi

)
= arg min

∀i∈1:Nt, ∀l∈1∼Nt
∀S∈Q

∥∥Yt|i − ht|ls
∥∥2

F
, (3)

where l̂i, ŝi are the activated antenna and transmitted symbol respectively, ht|l is the lth
column of Ht and it represents the corresponding channel matrix when the lth transmit
antenna is activated at time t, and Q is the set of constellation symbols.

The LC-DSM algorithm divides Yt into Nt signal vectors and utilizes them one by one
to recover the transmitted signal. During detection process, we firstly take out the first
column of Yt as Yt|1, and then Formula (3) can be deduced as(

l̂1, ŝ1

)
= arg min

∀l∈1∼Nt
∀S∈Q

∥∥Yt|1 − ht|ls
∥∥2

F
. (4)

From (4), the candidate symbols for searching are no longer a matrix but a symbol
vector, so we transform the matrix-searching in ML algorithm into vector-searching in
coherent detection algorithm. By using the low-complexity detection algorithm in [8], we

obtain the activated antenna l̂1 and the transmitted symbol ŝ1. The transmitted symbol
matrix satisfies the requirement that the transmitted antennas will be used only one
time at a transmitter matrix as in [8], so the channel vector corresponding to l̂1 will not
participate in the next searching process. On the basis of this characteristic, we delete the
l̂1 column from channel matrix Ht and obtain an Nr × Nt−1 channel matrix. According
to the same method, we take out the second column of Yt and obtain activated antenna
l̂2 and the transmitted symbol ŝ2, and then shrink channel matrix Ht. The process is
repeated until all activated antennas and transmitted symbols are detected.
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Here we present an example to illustrate the algorithm. Assume differential spatial
modulation system with QPSK (Quadrature Phase Shift Keying) modulation and Nt = 3,
Nr = 2. A diagram of detection procedure is depicted as follows:

Firstly, we take out the first column of Yt as Yt|1, use it to recover the activated antenna

l̂1 = 2 and the transmitted symbol ŝ2 = s2, and then delete the l̂1 column of Ht and
Ht shrinks to a 2 × 2 matrix. Secondly, we take out the second column of Yt as Yt|2,

and obtain l̂1 = 3, ŝ2 = s2. Repeat this step until all activated transmit antennas and
symbols are detected. During detecting, LC-DSM algorithm utilizes the advantage that
the complexity of LC-ML [8] algorithm is independent of M . Moreover, because of the
shrinkage of Ht, the algorithm avoids multiplying the candidate symbols by unrelated
channel vector, which can further reduce the complexity. However, owing to the detected
antenna index should be found essentially in the preset activated antenna matrix [6], the

elements in l̂i (i = 1, . . . , Nt) obtained at receiver must be different from each other.

This may cause some performance loss in low SNR region if the previous elements in l̂i
(i = 1, . . . , Nt) are detected in error.

A phenomenon needs to be explained here. When Nt ≥ 3, Nt! may not be an integer

power of two. According to the rule of DSM, there are only 2⌊log
Nt!
2 ⌋ kinds of antenna

activation schemes, but actually it can be Nt! due to the order of the matrix. This
leads to an overflow phenomenon in LC-ML algorithm. Assuming Nt = 4, Table 1 gives
the antenna activation schemes from 15th to 24th of DSM-ML and LC-DSM algorithm,
where the combination of numbers (for example 3-2-1-4) indicates the activation order of
all transmitting antennas.

As shown in Table 1, there are 8 more antenna activation schemes in LC-DSM than in
DSM-ML. So we might obtain a scheme that cannot be inversely mapped to the right bit
information. To solve this problem, we adopt the concept of bit-padding in [9] here and

Table 1. Antenna activation scheme from 15th to 24th of DSM-ML and
LC-DSM algorithm

15 16 17 18 19 20 21 22 23 24

DSM-ML
Nt = 4

3
2
1
4

3
2
4
1

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

LC-DSM
Nt! = 4

3
2
1
4

3
2
4
1

3
4
1
2

3
4
2
1

4
1
2
3

4
1
3
2

4
2
1
3

4
2
3
1

4
3
1
2

4
3
2
1



388 X. JIN, S. WEN, Y. LI AND Z. LI

switch the mapping method from directly using transmit antenna Nt in MIMO system to
select transmit antenna based on the Nt! kinds of symbol matrices in DSM system.

4. Simulation Results and Analysis.

4.1. Simulation results. Figure 1 compares the BER (bit error rate) performance with
LC-DSM algorithm, DSM-ML algorithm and the algorithm proposed in [6]. We target
a spectral efficiency of 2.5 bit/s/Hz and use QPSK modulation in frequency-flat block
Rayleigh fading channel.

Figure 1. BER performance against Nt = 2, Nr = 2, 3, 4

It can be observed from Figure 1 that under the same spectral efficiency conditions, the
LC-DSM has approximately 0.3dB and 0.2dB performance loss compared with DSM-ML
and the algorithm in [6] at the SNR region less than 8dB respectively, but has almost
no performance loss at the SNR region greater than 12dB. The performance of the algo-
rithms increases with the number of receive antennas under the same number of transmit
antennas.

4.2. Complexity analysis. In this subsection, we analyze the complexity of LC-DSM
detector by using the number of real-valued multiplications needed in the algorithms. We
give the computational complexity of LC-DSM detector as follows.

1) The computational complexity of LC-DSM detector: Employing the complexity
analysis method in [8], the algorithm needs (6Nr + 9) Nt real-valued multiplications for Yt|1
to recover the activated antenna and the transmitted symbol. In the case of Yt|2, because

there is no need to repeatedly compute
∥∥ht|l

∥∥2

2
as in [8], we need (4Nr + 9) (Nt − 1) real-

valued multiplications for Yt|2. Analogously we need (4Nr + 9) real-valued multiplications
for Yt|Nt . Thus, the computational complexity of LC-DSM is

CLC-DSM = 2NrN
2
t +

9

2
N2

t + 4NrNt +
9

2
Nt. (5)
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From (5), it is obvious that the complexity of the algorithm is independent of the size
of constellation.

2) The computational complexity of the algorithm proposed in [6] can be expressed as
Formula (6) at medium and high SNR regions.

C = (4NrNt + 11)Nt + (4Nr + 11)Nt(Nt − 1). (6)

Figure 2 shows a comparison among DSM-ML in [5], the algorithm in [6] and LC-DSM
in this paper. We can see that the algorithm in [6] achieves more than 90% complexity
reduction over the DSM-ML algorithm and the LC-DSM algorithm has even lower com-
plexity than [6]. Figure 3 gives a detailed comparison between LC-DSM algorithm and
the algorithm in [6].

Figure 2. Comparison of the computational complexity among three kinds
of algorithms aided QPSK at Nt = 16, Nr = 16

As can be seen from Figure 3, the computational complexity of LC-DSM algorithm has
an at least 50% reduction compared with the algorithm in [6] when Nr = 16. Meanwhile,
as the number of transmit antennas grows, the difference becomes more considerable. In
the case of Nt = 14, as the number of receive antenna grows, the complexity difference
becomes bigger than 50%.

5. Conclusions. In this letter, a novel LC-DSM detection method is proposed for dif-
ferential spatial modulation system. By transforming the equation structure of DSM-ML
algorithm, the LC-DSM detection can perform on the basis of the traditional searching
method of spatial modulation system. Simulation results show that LC-DSM algorithm
greatly reduces the computational complexity compared with the algorithm in [6], while
keeps the same performance in medium and high SNR regions. As its complexity is inde-
pendent of modulation order, the algorithm is more suitable to large-scale MIMO systems.
Our future work will be focused on applying the integration of ASVD algorithm [10] and
sphere-decoding [11] into the proposed scheme.
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Figure 3. Comparison of the computational complexity between LC-DSM
algorithm and the algorithm in [6] against Nr = 16 and Nt = 14
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