
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 2, February 2016 pp. 405–410

SELF-ADAPTIVE DIFFERENTIAL EVOLUTION WITH ELITE
OPPOSITION-BASED LEARNING

Zhaolu Guo1,∗, Xuezhi Yue1, Shenwen Wang2

Huogen Yang1 and Kangshun Li3

1Institute of Medical Informatics and Engineering
School of Science

Jiangxi University of Science and Technology
No. 86, Hongqi Ave., Ganzhou 341000, P. R. China

∗Corresponding author: gzl@whu.edu.cn
2School of Information Engineering

Shijiazhuang University of Economics
No. 136, Huaian East Road, Shijiazhuang 050031, P. R. China

3School of Mathematics and Informatics
South China Agricultural University

No. 483, Wushan Road, Tianhe District, Guangzhou 510642, P. R. China

Received August 2015; accepted November 2015

Abstract. Differential evolution (DE) is a very popular stochastic optimization tech-
nique, which has achieved many successful applications. In order to improve the efficiency
of the traditional DE, this paper presents an enhanced DE, called EOjDE, which utilizes
the self-adaptive control parameters scheme and elite opposition-based learning (EOBL)
strategy. The self-adaptive control parameters scheme can automatically tune the control
parameters according to the characteristics of the problem, while the EOBL strategy is
helpful to refine the quality of the individuals in the current population. The proposed
EOjDE is evaluated on a set of 13 classical test functions, and is compared with other
DE algorithms. The experimental results show the effectiveness and efficiency of the
proposed EOjDE.
Keywords: Evolutionary algorithm, Differential evolution, Self-adaptive, Elite opposit-
ion-based learning

1. Introduction. Differential evolution (DE) is a promising evolutionary algorithm
(EA), which has been successfully utilized in various fields [1, 2]. Like other EAs, DE is
a population-based stochastic optimization approach. It follows the general framework of
an EA, which repeatedly executes the mutation, crossover and selection operators at each
generation to create new individuals.

There are two important control parameters in the mutation and crossover operators
of DE, namely, scale factor F and crossover rate CR. The scale factor F is related to the
search step-size of mutation strategy, while the crossover rate CR controls the number of
components that are inherited from the mutation individual. These two control param-
eters that often greatly influence the performance of DE. However, choosing appropriate
values for the control parameters of DE is a time-consuming and difficult task [3]. On the
other hand, due to the stochastic nature, DE often suffers from premature convergence
and/or slow convergence when tackling complex practical problems [4]. Based on the
above considerations, in this paper, we present a self-adaptive differential evolution with
elite opposition-based learning strategy, called EOjDE. In order to alleviate the issue of
choosing appropriate values for the control parameters, we employ the self-adaptive con-
trol parameters schemes [5] to automatically adjust the control parameters according to
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the feedback from the search process. Moreover, to enhance the exploitation ability, we
incorporate the elite opposition-based learning (EOBL) strategy [6] into EOjDE.

The rest of this paper is organized as follows. The basic DE algorithm is introduced in
Section 2. The proposed EOjDE algorithm is described in Section 3. Experiments and
discussions are presented in Section 4. Finally, Section 5 concludes this paper.

2. Differential Evolution. Like other EAs, DE has a very simple structure. In its
search process, DE first initializes a random population with NP individuals, and then it
repeatedly performs the mutation, crossover, and selection operators at each generation
to steer its population toward the global optimum [7]. The operators of DE are elaborated
as follows.

In the mutation step, DE creates a mutation individual V t
i =

[
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(i.e., target individual) in the current

population [8], where i = 1, 2, . . . , NP ; j = 1, 2, . . . , D; t is the generation, NP is the size
of population, and D is the size of decision variables. There are many mutation strategies
used in DE algorithms. The most frequently used mutation strategy is DE/rand/1, which
is formulated as follows [1]:

V t
i = X t

r1 + F ×
(
X t

r2 − X t
r3

)
(1)

where r1, r2, and r3 are three mutually different indices randomly selected from the set
{1, 2, . . . , NP}\{i}, and F ∈ (0, 1) is called as scaling factor, scaling the difference vector
X t

r2 − X t
r3.

In the crossover step, DE combines the target individual and the mutation individual
with a certain probability to create a trial individual U t
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[1]:
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where rand(0, 1) is a random real number in the range [0, 1], and jrand is a random
integer selected from the range [1, D].

After executing the crossover step, DE conducts the selection operator to select the
better individual for the next generation between the target individual and the trial
individual. For a minimization optimization problem, the selection operator is defined by
[2]:

X t+1
i =

{
U t

i , if f(U t
i ) ≤ f(X t

i )
X t

i , otherwise
(3)

where f(.) is the minimization objective function.

3. The Proposed EOjDE.

3.1. Operations of EOjDE. As pointed out in [9], the two control parameters F and
CR often influence the performance of DE. However, there are no constant control pa-
rameter values that are suitable for various problems with different characteristics [9].
Moreover, even for a single problem at different evolutionary states, DE still needs dif-
ferent control parameter values to achieve promising performance. Therefore, it is a
time-consuming and difficult task to select suitable values for the two control parameters
F and CR. To address this issue, various researchers focus on employing adaptive and
self-adaptive parameter control strategies in DE [10]. In the adaptive and self-adaptive
DE, the control parameters are automatically tuned according to the feedback from the
search process. Therefore, the control parameters can dynamically take values that are
suitable for the characteristic of the solving problem. In reference [5], a self-adaptive
parameter control strategy is proposed to improve the performance of DE. The exper-
imental results show that this self-adaptive parameter control strategy is effective and
efficient. Thus, we employ the self-adaptive parameter control strategy in [5] to enhance
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the performance of our algorithm. In EOjDE, for the ith individual, it has its own control
parameters F t

i and CRt
i. At each generation, the current control parameters NF t

i and
NCRt

i for the ith individual are taken values by [5]:

NF t
i =

{
0.2 + 0.2 × rand(0, 1), if rand(0, 1) < 0.1
F t

i , otherwise
(4)

NCRt
i =

{
0.8 + 0.2 × rand(0, 1), if rand(0, 1) < 0.1
CRt

i, otherwise
(5)

After that, the current control parameters NF t
i and NCRt

i are used to create mutation
and trial individual for the ith individual, respectively. Furthermore, in the selection
operator, the control parameters F t+1

i and CRt+1
i associated with the ith individual are

updated by:
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(6)
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(7)

From the above formulas, it is known that the control parameters F and CR of EOjDE
can be automatically adjusted according to the feedback from the search process.

Besides the control parameters, the mutation strategy is also very essential for DE.
The widely used mutation strategy in DE is DE/rand/1, which can exhibit good ex-
ploration ability in the most cases. However, the DE/rand/1 mutation strategy often
suffers from poor exploitation, especially at the later stage of evolution. As is known,
the population may focus on a small promising region of the fitness landscape at the
later stage of evolution. At this stage, the exploitation ability is crucial in finding the
optimum solution efficiently [11]. However, the DE/rand/1 strategy often cannot exhibit
efficient exploitation ability in this case. To resolve this issue, Wang et al. [6] proposed an
elite opposition-based learning (EOBL) strategy to enhance the exploitation of DE. The
experimental results indicate that the EOBL strategy has powerful exploitation ability.
Therefore, we utilize the EOBL strategy to enhance the exploitation ability of EOjDE.
The EOBL strategy is formulated as follows.

For the ith individual X t
i , its corresponding elite opposition-based individual EOt
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are the selected

elite individuals used to calculate the search boundaries; eot
i,j is the elite opposition-based

value of xt
i,j, EAt

j and EBt
j denote the lower and upper boundaries of the jth dimension

of the selected elite individuals, respectively; LBj and UBj are the lower and upper
boundaries of the search space, respectively, and EN represents the size of the selected
elite individuals, which is set to SN ∗ 0.1, as recommended by the previous work [6].

3.2. Algorithmic description of EOjDE. Like GOjDE [5], EOjDE has the similar
framework, which combines both the self-adaptive parameter control scheme and elite
opposition-based learning strategy into the basic DE. At each generation, EOjDE executes
the elite opposition-based learning strategy with probability eop, and also performs the
self-adaptive DE operations with probability (1 − eop). The framework of EOjDE is
described in Algorithm 1, where FEs is the number of fitness evaluations; Max FEs
indicates the maximum number of evaluations, and Xbest is the global best individual.
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Algorithm 1 EOjDE Algorithm

1: t = 0;
2: FEs = 0;
3: Initialize the population;
4: while FEs < MAX FEs do
5: if rand(0,1)< eop then
6: Select EN elite individuals from the current population P ;
7: Calculate the lower and upper boundaries of the selected elite individuals;
8: Compute the elite opposition-based population EOP according to Equation

(8);
9: Select the fittest NP individuals from P

∪
EOP to enter the next generation;

10: FEs = FEs + NP ;
11: else
12: for i= 1 to NP do
13: Randomly select three mutually different indices r1, r2, r3 from the set

{1, 2, . . . , NP} \ {i};
14: Obtain values for NF t

i and NCRt
i according to Equations (4) and (5),

respectively;
15: jrand = randint(1, D);
16: for j = 1 to D do
17: if rand(0,1)< NCRt

i or j == jrand then
18: ut

i,j = xt
r1,j + NF t

i × (xt
r2,j − xt

r3,j);
19: else
20: ut

i,j = xt
i,j;

21: end if
22: end for
23: Execute the selection operator according to Equation (3);
24: Update F t+1

i and CRt+1
i according to Equation (6) and Equation (7), re-

spectively;
25: FEs = FEs + 1;
26: end for
27: end if
28: Save the best individual Xbest;
29: t = t + 1;
30: end while

4. Experiments.

4.1. Experimental settings. In order to testify the effectiveness of the proposed EO-
jDE, 13 test functions [12] are used to evaluate the efficiency of EOjDE. The size of decision
variables D of the test functions is set to 30. In the experiments, EOjDE is compared with
DE with self-adapting control parameters (jDE) [4], Opposition-Based DE (ODE) [13],
and DE with self-adapting control parameters and generalized opposition-based learning
(GOjDE) [5]. For a fair comparison, the common parameters of jDE, ODE, and GOjDE
are set to NP = 100. The other parameters of jDE, ODE, and GOjDE are set the same as
their original papers. In EOjDE, the probability eop of the elite opposition-based learning
strategy is set to 0.05, following the suggestions in [5]. For each algorithm on each test
function, 30 independent runs are conducted with 150,000 function evaluations (FEs) as
the stopping criterion. Moreover, the mean and standard deviation of the function error
values are recorded for evaluating the efficiency of the algorithms, and two-tailed t-test
at a 0.05 significance level [14] is performed on the experimental results.
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Table 1. Experimental results of jDE, ODE, GOjDE, and EOjDE over 30
independent runs for the 13 classical test functions

Function
Mean ± SD

jDE ODE GOjDE EOjDE
f1 1.51E-31±1.82E-31+ 6.20E-29±3.92E-29+ 4.19E-62±5.91E-62+ 2.09E-66±2.80E-66
f2 9.13E-19±3.70E-19+ 4.31E-09±2.61E-09+ 3.28E-33±2.87E-33+ 1.33E-34±1.31E-34
f3 1.85E-02±6.45E-03+ 1.45E-01±1.17E-01+ 1.41E-43±1.69E-43+ 6.57E-45±9.26E-45
f4 3.46E-04±1.23E-04+ 1.14E-07±3.43E-07+ 2.68E-21±3.72E-21+ 7.78E-23±7.78E-23
f5 1.87E+01±5.47E-01- 2.29E+01±1.28E+00- 2.79E+01±1.40E-01+ 2.77E+01±1.92E-01
f6 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
f7 5.89E-03±1.45E-03+ 1.78E-03±6.21E-04+ 1.75E-03±4.34E-04+ 1.21E-03±2.16E-04
f8 1.34E-02±1.82E-12- 7.51E+03±2.36E+02+ 3.90E+03±1.51E+03≈ 3.79E+03±1.08E+03
f9 0.00E+00±0.00E+00≈ 7.83E+01±2.21E+01+ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
f10 5.42E-15±1.74E-15+ 8.97E-15±1.74E-15+ 4.00E-15±0.00E+00≈ 4.00E-15±0.00E+00
f11 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
f12 1.97E-32±8.15E-33- 2.23E-29±2.32E-29- 1.90E-05±2.23E-05+ 1.21E-05±1.35E-05
f13 2.09E-31±2.93E-31- 2.57E-29±3.07E-29- 7.37E-04±1.03E-03+ 3.60E-04±2.41E-04
− 4 3 0
+ 6 8 8
≈ 3 2 5

Table 2. Average rankings of the four DE algorithms for the 13 test func-
tions achieved by the Friedman test

Algorithm Ranking

EOjDE 1.88
jDE 2.38

GOjDE 2.58
ODE 3.15

4.2. Results and discussions. The experimental results are described in Table 1, where
the symbols “+”, “−”, and “≈” denote that EOjDE performs better than, worse than,
and similar to the corresponding algorithms according to the two-tailed t-test at a 0.05
significance level, respectively. The results of jDE and ODE are taken from [15]. From
Table 1, we can see that EOjDE is significantly better than jDE, ODE, and GOjDE on the
majority of the test functions. In particular, EOjDE performs better than jDE, ODE, and
GOjDE on 6, 8, and 8 out of 13 test functions, respectively. EOjDE demonstrates similar
performance with jDE, ODE, and GOjDE on 3, 2 and 5 test functions, respectively. In
addition, jDE and ODE is better than EOjDE only on 4 and 3 test functions, respectively.
GOjDE cannot outperform EOjDE on any test function. The excellent performance of
EOjDE should be because the self-adaptive control parameters scheme and EOBL strategy
can significantly enhance the search ability.

The average ranking of Friedman test is also carried out on the experimental results
as recommended by [14]. The average ranking of the four DE algorithms is described in
Table 2. The performance of the four DE algorithms can be sorted by the average ranking
into the following order: EOjDE, jDE, GOjDE, and ODE. Thus, the best average ranking
is achieved by EOjDE, which is better than the other three DE algorithms.

5. Conclusions. To promote the search ability of DE, an enhanced DE (EOjDE) is pre-
sented in this paper. In EOjDE, it employs the self-adaptive control parameters scheme
and elite opposition-based learning (EOBL) strategy to promote the search ability. The
control parameters F and CR of EOjDE are automatically tuned by the self-adaptive con-
trol parameters scheme, while the exploitation ability of EOjDE is enhanced by the EOBL
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strategy. In the experiments, EOjDE is tested on a set of 13 classical test functions, and
is compared with three DE variants, namely, jDE, ODE, and GOjDE. The experimental
results indicate that EOjDE can achieve better performance on the majority of the test
functions.

In the future, we will utilize the proposed EOjDE to solve machine learning problems,
such as clustering and regression problems.
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