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Abstract. A new acceleration particle swarm optimization algorithm is developed in
this study for the sequential capture of multiple local optima of multimodal functions.
The proposed algorithm does not stop but instead continues to search when a new local
optimum is found. Particles are attracted by personal and global bests and repelled by
the local optima obtained with the proposed algorithm. Particle acceleration depends on
resultant forces. A reselection operation is implemented for personal and global bests to
prevent particles from flying back to the local optimum. A hybrid mutation strategy is
also adopted to increase the diversity of the particle swarm. The computational results
on two complex multimodal functions prove that the proposed algorithm is a feasible and
effective approach for multimodal function optimization problems.
Keywords: Acceleration particle swarm optimization, Multimodal function, Multiple
local optima, Sequential capture

1. Introduction. Particle swarm optimization (PSO) was proposed by Kennedy and
Eberhart in 1995 and has since become one of the most popular evolution algorithms
(EAs) based on swarm intelligence [1]. As a result of its numerous advantages, including
simple formula, quick convergence, minimal parameter requirements, and so on, PSO
has been regarded as a popular and powerful tool for solving engineering optimization
problems and has been improved with various methods for various applications [2-4].
This study focuses on the issue of solving multimodal functions with PSO. A multimodal
function refers to a function with multiple local optima, including global optima. In solving
these problems, the goal is to identify not only all the global optima but also as many
local optima as possible so as to provide comprehensive information or wide selection of
choices for decision makers.

Although PSO shows satisfactory performance in numerous optimization problems, it
also easily falls into the local optima, especially when used to solve multimodal func-
tion optimization problems. To overcome this problem, some researchers focus on helping
trapped particles escape from the local optima and gain more local optima, including
global optima. For example, a modified PSO with an adaptive mutation strategy was
designed for multimodal function optimization problems [5]. Three types of mutation
operators can be adopted to maintain swarm diversity. In [6], a parameter adaptive har-
mony search algorithm was developed to overcome premature convergence and obtain
a global optimal solution. In [7], PSO was integrated with a local search technique to
locate multiple global and local optimal solutions. In [8], a modified PSO with multiple
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subpopulations was developed. In the present work, we propose a new acceleration PSO
(APSO) inspired by Newton’s law of motion. The computational results show that the
proposed algorithm can sequentially capture all the local optima including global optima
of multimodal functions in a single run. The rest of this paper is organized as follows.
Section 2 introduces APSO in detail. Experimental results on two test functions and
discussion are presented in Section 3. At last, conclusions and further research aspects
are given in Section 4.

2. Acceleration Particle Swarm Optimization. First, Newton’s law of motion is
given.

a =
v2 − v1

t
(1)

v2 = v1 + a · t (2)

x2 = x1 + v1 · t + 0.5a · t2 (3)

During the time step t, an object with initial velocity v1 moves from position x1 to
position x2. The velocity modifies v2 from v1 after time step t. The acceleration is defined
by Equation (1). The new velocity v2 is obtained by Equation (2). So the new position of
the object is obtained by Equation (3). According to Newton’s law of motion, it can be
considered that the particles fly with force in the solution space. Particles are attracted
by personal and global bests and repelled by the local optima. The acceleration of particle
depends on resultant forces. Figure 1 shows the force diagram for a particle.

Figure 1. Force diagram for a particle

The new acceleration particle swarm optimization (APSO) is presented as follows:
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Equation (4) is the formula for acceleration update. The first and second parts of the
right side of the equation represent the accelerations caused by the attractive forces of
the personal and global bests, respectively; the third part represents all the accelerations
caused by the repulsive force of the local optima. Equation (5) is the formula for velocity
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update, and Equation (6) is the formula for position update, where xt
id and xt+1

id are the
current and next positions, respectively; vt

id and vt+1
id are the current and next velocities,

respectively; w is the inertia weight; at
id is the current acceleration; pt

id and pt
gd are the

personal and global bests, respectively; c1, c2, and c3 are the positive constants assigned by
the designer; r1, r2, and r3 are three uniform random numbers selected from the interval
[0, 1]; pj is one of the k local optima obtained currently. The repulsive force should
gradually decrease as the particles move away from the local optimum to avoid affecting
the motion of the particles in the future. The constants c3, R, b, and c can be changed to
adjust the size and scope of the repulsive force. Furthermore, as shown in Equation (4),
when acceleration caused by repulsive force is less than e (positive constant), then it is
set to 0.

2.1. Premature convergence criterion. The proposed APSO algorithm can help trap-
ped particles jump from the local optimum to avoid premature convergence. We use a
diversity valve to estimate possible premature convergence and confirm a local optimum.

Definition 2.1. Diversity valve

Div =

N∑
i=1

√
n∑

d=1

(xt
id − pd)

2

NL
(7)

Equation (7) is the formula for diversity valve, where Div is the average distance be-
tween particles, N is the population size, L is the maximum distance of the decision space,
xt

id is the current particle of iteration t and dimension d, and pd is the average position in
dimension d of all particles. The premature convergence criterion can be described as fol-
lows: if the global best is not updated for T iterations and Div is less than ε (ε ∈ (0, 1)),
then the current global best is considered a new local optimum.

2.2. Reselection operation. Once a new local optimum is found, the current particles
are reinitiated because they are useless in future search. Although the particles are re-
pelled by the local optimum, they are also attracted by personal and global bests that are
probably near the local optimum. The direction of attractive and repulsive forces may
be opposite, and the particles would vibrate in a certain space. Thus, the personal and
global bests of particles should be reselected under certain conditions.

We use two two-dimensional arrays named ft(i, t) and aft(i, t) to save the fitness and
additional fitness valves of all particles in all iterations, where i and t represent the number
of particles and iterations respectively. We also employ a three-dimensional array named
x(i, j, t) to save the positions of all particles in all iterations, where j represents the number
of dimensions. The initial values of all elements of aft(i, t) are set to 0. Furthermore, a
collection G is used to save all local optima recently found. Some definitions are provided
below. We take the minimization problem as an example.

Definition 2.2. Dangerous fly.

If a particle’s fitness and the distance from current position to local optimum decrease
or increase together, the particle of current iteration is considered to have experienced
Dangerous fly. If a particle experienced continuous Dangerous fly before it eventually fell
into the local optimum, that means the particle and the local optimum are in the same
trough. So the particle is not qualified as a personal or global best.

Definition 2.3. Checking operation.

Check all particles to confirm whether current particle of current iteration has experi-
enced Dangerous fly. The checking operation will not be executed until at least one local
optimum is found.
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Definition 2.4. Reselection operation.

The reselection operation is executed after a new local optimum is found and after
the particle swarm is reinitiated. The steps of the reselection operation are specified as
follows.
Step 1. When at least one local optimum is found, ft(i, j), aft(i, j), and x(i, d, j) are
started to record corresponding values and the checking operation is executed.
Step 2. Whenever the repulsive force is greater than the attractive force (that means the
personal and global bests are near the local optimum), set the additional fitness valves
of aft(i, j) corresponding to the last continuous Dangerous fly to 1,000 (or any positive
constant that is adequately large). So the corresponding position of this particle is no
longer selected as a personal or global best.
Step 3. Find the best valve of each row of array (ft(i, j) + aft(i, j)) and regard the
corresponding position as the new personal best of each particle. Find the personal best
with the best fitness valve as the new global best.

2.3. Mutation strategy. A hybrid mutation strategy that consists of uniform and Gauss
mutations is adopted in the proposed APSO algorithm to increase population diversity.
Uniform mutation is defined by Equation (8) and Equation (9), where xt

i and vt
i are

the current position and velocity, respectively; xmax and xmin are the upper and lower
bounds of the position, respectively; and vmax and vmin are the upper and lower bounds
of velocity, respectively. Gauss mutation is defined by Equation (10) with a variance of
0.1. The proposed mutation strategy is described as follows. (1) Each particle is assigned
a probability of 1/N to execute uniform mutation in each iteration. (2) The particles
with the highest N/4 fitness valves are assigned a probability of 4/N to execute Gauss
mutation in each iteration.

xt
i = xmin + rand × (xmax − xmin) (8)

vt
i = rand × (vmax − vmin) (9)

xt
i = xt

i(1 + 0.1 × Gaussian(0.1)) (10)

3. Computational Experiments. Consider modified Himmelblau function:

f(x, y) =
(
x2 + y − 11

)2
+
(
x + y2 − 7

)
+ 0.1

[
(x − 3)2 + (y − 2)2

]
(11)

Figure 2. Modified Himmelblau function
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Figure 3. Contour of modified Himmelblau function

Figure 2 shows the 3-D surface of modified Himmelblau function with the defined
space −6 ≤ x ≤ 6 and −6 ≤ y ≤ 6, and its corresponding contour is shown in Figure
3. It can easily be found from Figure 3 that this optimized function has four minimum
points including one global minimum that occurred at f(3, 2) = 0, and the three local
minimum points at f(−3.7634,−3.2660) ≈ 7.3673, f(3.5814,−1.8208) ≈ 1.5043, and
f(−2.7870, 3.1282) ≈ 3.4871, respectively. Furthermore, the parameters used in APSO
are given by the population size N = 40, inertia weight w = [0.9, 0.4], positive constants
c1 = 0.5, c2 = 1.5, c3 = 1, R = 2, c = 0.5, b = 3, ε = 0.05, T = 5, e = 0.25, and the
maximum iteration number tmax is 100.

Figure 4 demonstrated the convergence behavior of particles by the number of iterations,
where circular makers represent particle positions and square makers represent positions
of local optima including global optimum. It can be seen in Figure 4 that the local optima
including global optimum are found sequentially.

Consider another function named Foxholes:

min f(X) =
1

500
+

25∑
j=1

1

j +
2∑

i=1

(xi − aij)6

(12)

a{1} =


−32 −16 0 16 32
−32 −16 0 16 32
−32 −16 0 16 32
−32 −16 0 16 32
−32 −16 0 16 32



a{2} =


−32 −32 −32 −32 −32
−16 −16 −16 −16 −16
0 0 0 0 0
16 16 16 16 16
32 32 32 32 32

 , aij = a{i}(j)

The Foxholes function has twenty five local maximum points including one global max-
imum point. APSO is used to solve this optimization problem with the purpose of finding
all local and global maximum points. The parameter settings are the same as the first
problem except that the maximum iteration number tmax is 500. Figure 5 showed that
all the local maximum points including one global maximum point marked by white dots
have been found in a single run and the contour of this function is shown in Figure 6.
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 18

(d) Iteration 19 (e) Iteration 24 (f) Iteration 37

(g) Iteration 38 (h) Iteration 43 (i) Iteration 58

(j) Iteration 59 (k) Iteration 64 (l) Iteration 78

Figure 4. The convergence behavior of particles by the number of iterations

We make a comparison between APSO and MPSO [8]. As a modified PSO with mul-
tiple subpopulations, MPSO can find local optima simultaneously and each subpopula-
tion could find at most one local optimum. Obviously a large number of subpopulations
increase the possibility of finding a large number of local optima, but the number of
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Figure 5. Maximum points of Foxholes function

Figure 6. Contour of Foxholes function

subpopulations is uncertain because the number of local optima is unknown in advance.
Moreover, different subpopulations may find a same local optimum. So finding all the
local optima in a single run cannot be guaranteed. By contrast, the main idea of APSO
is to prevent the search in obtained local optima areas, and the major strategies are re-
pulsive force of local optima and reselection operation of personal and global bests. In
this way, the algorithm can find all the local optima sequentially in a single run. The
experimental results on two test functions have shown the excellent performance of the
proposed algorithm.

4. Conclusions. A new APSO algorithm is successfully developed in this study for the
sequential capture of the multiple local optima of multimodal functions. With this al-
gorithm, the particles are repelled by the local optima and are thus never trapped. The
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personal and global bests of particles are reselected under certain conditions to prevent
particles from flying back to the local optima. The computational results sufficiently re-
veal the applicability of the proposed algorithm. This algorithm could also be combined
with existing algorithms to improve convergence accuracy. In the future, the new APSO
algorithm may be utilized to solve discrete and multi-objective optimization problems.
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