
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 2, February 2016 pp. 425–431

AN ENERGY-EFFICIENT DATA REPLICA DYNAMIC PLACEMENT
STRATEGY FOR CLOUD STORAGE

Qingying Lin1,2 and Yuelong Zhao2

1Department of Computer Science and Engineering
Hanshan Normal University

Qiaodong Street, Chaozhou 521041, P. R. China
lqying@hstc.edu.cn

2School of Computer Science and Engineering
South China University of Technology

Panyu District, Guangzhou 510006, P. R. China
ylzhao1@scut.edu.cn

Received August 2015; accepted November 2015

Abstract. Cloud storage system as an important component of cloud computing is the
foundation of all kinds of cloud computing services. However, with the expansion of its
scale and the energy consumption factors being ignored by its designers, the problem of
high energy consumption and low efficiency is exposed. To solve energy saving of cloud
storage system, an energy-efficient algorithm is proposed in this paper. The algorithm
dynamically adjusts data replica placement according to the access heat and workload of
DataNode. Meanwhile, to ensure data’s availability and improve system’s performance,
the DataNodes actively apply for sleeping, and NameNode makes sure whether a DataN-
ode can sleep. Experimental results show that the proposed algorithm can effectively reduce
the energy consumption while guaranteeing the data availability. And the algorithm is
more efficient when the system’s workload and access heat are low.
Keywords: Cloud storage, Energy-efficient, Data replica

1. Introduction. Cloud storage system is served as the core underlying infrastructure
for cloud computing. However, with the expansion of its scale and the energy consump-
tion factors being ignored by its designers, the problem of high energy consumption and
low efficiency is exposed. According to [1], it is predicted that the average IT energy
consumption in 2025 will be 5 times as much as that of 2006, while that energy con-
sumption of networking equipment will be up to 13 times. Meanwhile, Barroso and his
teammate have done an investigation on more than 5000 Google servers for half a year
[2]. The result shows that most of time the utilization of the server is between 10% and
50%. Even if the workload is lower than 10%, the energy consumption is 50% as much
as the peak energy consumption. Obviously, the servers of Google have not been used
efficiently. The main reason causing the low energy utilization in Google’s servers is that
the load balanced algorithm of GFS (Google File System) [3] averages its distribution of
user’s requests to all servers and uses the replica mechanism to ensure data availability,
which improves the availability of the system but does not take the relationship between
resource utilization and energy efficiency into account.

Hence, how to reduce the energy consumption but not to affect data availability has
been an important element for building cloud storage system. In [4,5], it made some
research on the access rules of data block in the HDFS (Hadoop Distributed File System)
cluster of Yahoo. In order to save energy, it divided the storage area into Hot-zone and
Cold-zone, and turned the nodes of the Cold-zone into sleeping or off mode. In [6], a
cluster reconfiguration algorithm was designed for HDFS. To reduce energy consumption,
Nitesh et al. dynamically reconfigured the cluster based on the current workload, and

425



426 Q. LIN AND Y. ZHAO

turned nodes on or off when the average cluster utilization rose above or fell below a
specified threshold. In [7,8], an energy-efficient algorithm was proposed based on block
storage structure reconfiguration within rack. The algorithm divided the rack into two
storage areas, Active-Zone and Sleeping-Zone, reconfigured the data storage structure by
calculating each data file’s active factor, and turned the DataNode in Sleeping-Zone to
sleep status in order to achieve energy savings. The data blocks are put into different zones
and turn the nodes into sleeping or off mode. During the process, it is necessary to do a
large number of data transferring operations among nodes. For a large-scale system, it will
increase the cost to transfer the data across network and to ensure the data availability.

In this paper, we address an energy-efficient data replica dynamic placement strategy
for cloud storage system. Although we focus on HDFS cloud storage system, our approach
can also be applied to other similar systems. The remainder of the paper is organized
as follows. We provide data models for energy-efficient algorithms in Section 2. Next,
an energy-efficient data replica dynamic placement strategy is proposed in Section 3.
The evaluation and simulation results of the proposed algorithms are given in Section 4.
Finally, in Section 5 some conclusions are presented.

2. Data Modeling. We model the data availability and energy-efficient requirements,
and also propose the definition of energy-efficient problems under HDFS. HDFS has a
master-slave architecture in which the master is called NameNode and the slaves are
called DataNode. The NameNode is responsible for storing the HDFS namespace and it
records changes to the file system metadata. HDFS is composed of multiple racks. The
DataNodes are spread across multiple racks and store the data in their local file system.
HDFS implements a rack-aware data block replica policy for the data. By default, the
number of replicas of a data block is 3. The HDFS’s replica placement policy is to put one
replica of the block on one DataNode in the local rack, another on a different DataNode
in some other rack, and the third on a DataNode in the same rack [9].

Definition 2.1. Cluster DataNode Matrix. Let the HDFS cluster consist of c racks, and
each rack with several DataNodes. The number of DataNodes may be different. Let r
denote the maximal number of DataNode in rack, and the Cluster DataNode Matrix is
denoted by Cr×c.

Cr×c =


dn11 dn12 · · · dn1c

dn21 dn22 · · · dn2c
...

...
...

...
dnr1 dnr2 · · · dnrc

 (1)

where, dnij (1 6 i 6 r, 1 6 j 6 c) represents the ith DataNode in the jth rack in
cluster. Let k denote the number of the DataNode in the jth rack. If k < r, dmj = 0
(k + 1 6 m 6 r).

Definition 2.2. DataNode State Matrix. DataNode may have a variety of states in the
cluster. If the sets of the state are denoted as state = {0, 1, 2, 3}, 0 represents that there is
no DataNode in the rack, while 1, 2, 3 represent DataNode in active state, sleeping state
and failure respectively. The same point of sleeping and failure state is that DataNode
cannot be used at that time. On the basis of Matrix Cr×c, and the recent state of each
DataNode, the DataNode State Matrix for building can be denoted by DSr×c.

DSr×c =


ds11 ds12 · · · ds1c

ds21 ds22 · · · ds2c
...

...
...

...
dsr1 dsr2 · · · dsrc

 (2)



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 427

Definition 2.3. File’s Block Storage Matrix. The sets of data files in system storage are
marked as files = {F1, F2, · · · , Fw}. According to rack-aware data block replica policy in
HDFS, if the file Fi (1 6 i 6 w) divided into n data blocks, each of which has m replicas,
different data blocks should be stored in different DataNodes. The position where n ×m
data blocks of file Fi are stored in DataNode can be denoted by Matrix Sn×m.

Sn×m =


bdn11 bdn12 · · · bdn1m

bdn21 bdn22 · · · bdn2m
...

...
...

...
bdnn1 bdnn2 · · · bdnnm

 (3)

where, bdnij ∈ Cr×c (1 6 i 6 n, 1 6 j 6 m), the position of any data block in Fi can be
found out quickly through File’s Block Storage Matrix Sn×m.

Definition 2.4. File’s Block State Matrix. According to Definition 2.3 and Definition 2.2,
all data block storage state of file Fi can be denoted by Matrix BSn×m. Here, bsij ∈ {1, 2, 3}
(1 6 i 6 n, 1 6 j 6 m), State 1 represents the data block stored in the active DataNode,
which means this data block can be used. State 2 represents the data block stored in the
sleeping DataNode. State 3 represents the data block stored in failed DataNode. Both state
2 and state 3 represent that the data blocks cannot be used. The availability of the file Fi

can be judged by Matrix BSn×m. From the definition, the file can be used which has state
1 in each line of the Matrix BSn×m at least.

BSn×m =


bs11 bs12 · · · bs1m

bs21 bs22 · · · bs2m
...

...
...

...
bsn1 bsn2 · · · bsnm

 (4)

Supposing k data blocks are stored in node dnij, the blockList can be used to denote
the sets of all the data blocks. That is blockList = {block1, block2, · · · , blockk}. Within
the set time period T , the access heat of block and node can be defined.

Definition 2.5. Block Access Heat. If the times of access is numi within the set time
period T , the access frequency is VFi = numi/T , blocki and its access heat can be denoted
as follows.

BH blocki =


1, VFi ≤ h1

2, h1 < VFi ≤ h2

3, h2 < VFi ≤ h3

4, VFi > h3

(5)

where, 1 6 i 6 k, h1, h2, h3 are three thresholds of access heat, which can be set up.

Definition 2.6. DataNode Access Heat. Supposing the whole access heat of DataNode is
DH, it can be concluded according to Definition 2.5.

DH =

(
k∑

i=1

BH blocki

)
/k (6)

where k is the number of data blocks in DataNode.

3. Proposed Energy-Efficient Algorithms. In this section, we explain the energy-
efficient algorithms for cloud storage system based on dynamic management of data
replica. By recording the access information of each block in the DataNode, calculate
the access heat of each DataNode within set time period T . When the access heat satis-
fies the sleeping conditions, DataNode will initiatively apply to NameNode for sleeping.
Whether NameNode will agree on the sleeping or not depends on the recent workload of
DataNode. When DataNode satisfies the sleeping conditions, it will keep itself in sleeping



428 Q. LIN AND Y. ZHAO

mode to save energy. To ensure the data availability, NameNode will manage the data
replica dynamically. The algorithm process is completed as the following 4 main steps:

(1) Create fundamental data. To create fundamental data is the most basic step of
energy-efficient algorithms. Fundamental data is stored in FSnamesystem of NameNode.
The fundamental data includes the following.

Check the cluster DataNode status information, and create the Cluster DataNode Ma-
trix Cr×c and the DataNode State Matrix DSr×c.

Check the cluster data file information, and create data file set files = {F1, F2, . . . , Fw}.
Look for BlocksMap in FSnamesystem, and create the Block Storage Matrix Sn×m for

each of file. Let set sysS = {S1, S2, . . . , Sw} denote each Block Storage Matrix of w data
files, respectively.

By the Block Storage Matrix Sn×m and the DataNode State Matrix DSr×c, get the
Block State Matrix BSn×m of each file. Let set sysBS = {BS1, BS2, . . . , BSw} denote
each Block State Matrix of w data files, respectively.

(2) DataNode applies for sleeping algorithm. When the users of the cloud stor-
age system inquire some information about accessing file, NameNode will look for the
BlockMaps from FSnamesystem, and return the block identifier which corresponds to the
file, and return the DataNode which corresponds to the block. According to the obtained
information, the users can send an access request to the DataNode. After receiving the
access request, DataNode will record the identifier of accessing block and the access time.
And then it will return the data of the request file. Hence, DataNodes will record how
many times each block has been accessed in the DataNode. If the access heat of the
DataNode is lower than the specified threshold after a time period T , DataNode will ap-
ply to NameNode for sleeping.
Algorithm 1: Apply for sleeping algorithm
Input: The access counts set of k block in DataNode vNum = {num1, num2, · · · , numk},
the time period T , the threshold of access heat h1, h2, h3, the threshold of sleep sh.
Step 1: for each numi in set vNum do
Step 2: calculate VFi by VFi = numi/T
Step 3: calculate BH blocki by Formula (5)
Step 4: end for
Step 5: calculate DH by Formula (6)
Step 6: if DH < sh then
Step 7: SleepSender (nodeId, blockList, T ) //sent sleeping application
Step 8: endif
where, T is the time period of implementing the algorithm (one day, one week, etc.). Set
up different values of T according to the characteristics of different clusters. The best
way is to implement the algorithm when clusters are free. When reaching the sleeping
time period, the DataNode kept in sleeping state will actively restore its running state,
not being waken up by NameNode.

(3) Verify data availability algorithm. After receiving the sleeping request from
DataNode, NameNode will check each block in DataNode. Firstly, get file from each
block i; secondly, find the File’s Block State Matrix, and pick up all replicas’ storage
state corresponding to block i. If there is only one replica in the active state, this block
identifier will be put in the set of activeSoleList and return.
Algorithm 2: Verify data availability algorithm
Input: The DataNode that applies for sleeping nodeId, DataNode’s block set blockList.
Output: The block set of only one replica in active state activeSoleList
Step 1: for each block i in set blockList do
Step 2: file ← getINodeFile(block i)
Step 3: BS ← get the Block State Matrix of file
Step 4: bsRow ← get a row in BS, which is the block state of all replicas correspond-



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 429

ing to block i

Step 5: active ← 0
Step 6: for each bsij in bsRow do
Step 7: if bsij == 1 then active++;
Step 8: end for
Step 9: if active == 1 activeSoleList ← block i

Step 10: end for
Step 11: return activeSoleList

(4) Judge and deal with sleeping algorithm. NameNode will judge whether
DataNode meets the sleeping condition. If the length of activeSoleList is 0, it means more
than one block replicas in the active state in this DataNode. Thus, NameNode agrees
to sleep and modify DataNode State Matrix. If not, judge the workload of DataNode.
If the workload of DataNode is less than the specified threshold, it will select the data
block of the destination DataNode and exchange it. If the workload of the destination
DataNode is more than the specified threshold and the selected data for exchanging not
in the activeSoleList, which means more than one replica of exchanging block in active
state, it will optimally select the DataNode from the same rack, and then agree to sleep
and modify DataNode State Matrix.
Algorithm 3: Judge and deal with sleeping algorithm
Input: The DataNode set of applying for sleeping Dn apply = {dn1, dn2, · · · , dnt}
Output: The DataNode State Matrix DSr×c

Step 1: for each dni in set Dn apply do
Step 2: if activeSoleList.length == 0 then
Step 3: Update dni’s state with 2 in DataNode State Matrix DSr×c

Step 4: else
Step 5: Udi ← calculate current utilization of dni

Step 6: if Udi < WT then
Step 7: dn dest ← Select destination DataNode
Step 8: for each block i in activeSoleList of dn i do
Step 9: bi ← Select block not in activeSoleList of dn dest
Step 10: IntraRackTransfer(block i, dni, bi, dn dest)
Step 11: end for
Step 12: Update dni’s state with 2 in DataNode State Matrix DSr×c

Step 13: end if
Step 14: end if
Step 15: end for
Step 16: return DSr×c

4. Evaluation and Simulation Results. In order to evaluate the energy-efficient al-
gorithms proposed in this paper, we use CloudSim toolkit to simulate HDFS architecture
and perform our experiment. Through the experiment, the active sleeping energy-efficient
algorithm proposed in this paper, is analyzed and compared with the algorithm in [6] and
[7]. To evaluate the performance of the algorithm and ensure the availability of the ex-
perimental data, the experimental cluster is composed by 10 racks with 10 DataNodes in
each rack. Hence, there are totally 100 DataNodes in the cloud storage system. If the
time period T is one day for implementing the algorithm, and the access heat threshold of
the DataNode sh is 2, the threshold of DataNode workload rate WT is 50%. The number
of files is varied from 200 for low workloads to 400 for high workloads and the file size
is varied from 3000 MB for low workloads to 15000 MB for high workloads. And the
frequency of accessing file is varied from 512 times in the previous five time periods to
5120 times in the back five time periods. The experimental results are shown in Figure 1
and Figure 2.



430 Q. LIN AND Y. ZHAO

Figure 1. The energy saving rates under various workloads

Figure 2. The energy saving rates under different accessing frequency

Figure 1 shows the different energy-saving rates between our algorithm and the algo-
rithms of [6] and [7] under various workload rates. In [6], the algorithm changes with
the change of DataNode workload. When the workload rate is higher, the rate of energy
saving is lower; when the workload rate is lower, the rate of energy saving is higher. In
[7], the algorithm is less influenced by the workload rate. After several running cycles,
the data influence factors are calculated for the whole system, and the division of the area



ICIC EXPRESS LETTERS, VOL.10, NO.2, 2016 431

of rack tends to be stable, which makes the rate of energy saving steadier. While our
algorithm changes with the changes of the DataNode workload. When the workload is
lower, the rate of energy saving is higher. From Figure 2, we can know when the average
accessing frequency is lower, the rate of energy saving is higher in our algorithm than the
other two algorithms.

Moreover, we can know that the algorithm in [6] is more suitable for the workload
fluctuation system, while the algorithm in [7] is more suitable for system that the data is
accessed with regularity and the workload is stable. Our algorithm takes the access heat
and the workload rate into account. Hence, it can be suitable for system that the data is
accessed with low frequency and the workload is fluctuation. The energy-saving efficiency
is more flexible and effective.

5. Conclusions and Future Work. In this paper, an energy-efficient data replica dy-
namic placement strategy for cloud storage is proposed. We get the access heat of DataN-
ode by calculating block’s access rate. DataNode actively applies for sleeping based on
access heat of DataNode. NameNode decides the sleeping mode on or off depending on
the recent workload of DataNode and the data available state. Hence, it can dynamically
manage the running state of the DataNode. Experiments show that it can increase server
utilization and save energy effectively.

Acknowledgment. This work is partially supported by the Guangdong Science and
Technology Planning Project of China (No. 2012B010100036), the Guangdong Science
and Technology Planning Project of 2015 Public Research and Capacity Building.

REFERENCES

[1] D. Yun and J. Lee, Research in green network for future Internet, Journal of Korean Institute of
Information Scientists and Engineers, vol.28, no.1, pp.41-51, 2010.

[2] L. A. Barroso and U. Hlzle, The datacenter as a computer: An introduction to the design of
warehouse-scale machines, Synthesis Lectures on Computer Architecture, Morgan & Claypool Pub-
lishers, 2009.

[3] S. Ghemawat, H. Gobioff and S. T. Leung, The Google File System, Proc. of the 19th ACM Sympo-
sium on Operating System Principles, pp.29-43, 2003.

[4] R. T. Kaushik and M. Bhandarkar, Green HDFS: Towards an energy-conserving, storage-efficient,
hybrid Hadoop compute cluster, Proc. of the 2010 International Conference on Power Aware Com-
puting and Systems, pp.1-9, 2010.

[5] R. T. Kaushik, M. Bhandarkar and K. Nahrstedt, Evaluation and analysis of green HDFS: A self-
adaptive, energy conserving variant of the Hadoop distributed file system, Proc. of the 2nd IEEE
International Conference on Cloud Computing Technology and Science, pp.274-287, 2010.

[6] M. Nitesh, R. Nanduri and V. Varma, Dynamic energy efficient data placement and cluster recon-
figuration algorithm for MapReduce framework, Future Generation Computer Systems, vol.28, no.1,
pp.119-127, 2011.

[7] B. Liao, J. Yu, T. Zhang et al., Energy-efficient algorithms for distributed file system HDFS, Chinese
Journal of Computers, vol.36, no.5, pp.1047-1064, 2013.

[8] B. Liao, J. Yu, T. Zhang et al., Energy-efficient algorithms for distributed storage system based
on block storage structure reconfiguration, Journal of Network and Computer Applications, vol.48,
pp.71-86, 2015.

[9] K. Shvachko, H. R. Kuang, S. Radia et al., The Hadoop distributed file system, Proc. of the 26th
Symposium on Mass Storage Systems and Technologies, pp.1-10, 2010.


