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Abstract. As an important variant of hypercube, the exchanged hypercube EH(s, t) not
only kept numerous desirable properties of the hypercube, but also reduced the intercon-
nection complexity. In this paper, we analyze important properties related to embedding
star networks Sn into EH(s, t) network. The main results are: (1) Sn can be embedded
into EH(s, t) with 2 ≤ expansion < 4, dilation = N + 2, congestion = 1, load = 1
where s + t = ⌈log2(n!)⌉ = N ; (2) S4m can be embedded into EH(s, t) with dilation =
2d + 6, where m > 1, d = ⌈log2(m!)⌉, s + t + 1 = 4d + 8m− 3; (3) S2im can be embedded
into EH(s, t) with dilation = 2d + 2i + 2 where m > 1, i ≥ 1, and d = ⌈log2(m!)⌉,
s + t + 1 = 2id + i2im − 2i + 1.
Keywords: Star networks, Exchanged hypercube, Dilation, Embedding

1. Introduction. It is well known that the versatility is one of the important properties
of any general interconnection network model. It refers to the ability of a network model
simulating another network model. The nature of the problem is the network embedding,
which is also a challenging topic in graph theory. If a network model can be embedded into
another network model, it means the latter can simulate the former, and the algorithms
originally developed for the former model can be mapped to the latter. Furthermore, one
network has better versatility if it can embed more other networks. On the other side, em-
beddings allow the new architecture to simulate the old one. High efficient embeddings
can improve the performance of parallel algorithms. Thus, the embedding of network
model is an important issue in parallel computing [1-9]. As one of important applications
of a parallel computer network model, hypercube has aroused the interests of many ex-
perts and scholars, and then has got a lot of valuable results [10-12]. However, hypercube
scales too rapidly as n increases. Existing research has proposed some networks that are
variations of the hypercube network variants such as folded hypercube, twisted cube net-
work, cross cube network and so on. The exchanged hypercube [13] EH(s, t) is one of a
new variant of the hypercube. It is not only to keep the several desirable properties of the
hypercube but also reduces the complexity of the network interconnection. Some research
showed EH(s, t) has nice recursiveness and preferable network parameters [14-16]. In par-
ticular, the embedding issues of EH(s, t) have become the focus of the researchers for the
purpose of improving the versatility. It has already been shown that hypercubes, cycles,
and E-2D Mesh networks can be embedded into EH(s, t) [1,17,18]. Since star network
represents the communication structures of many applications in scientific computations
as well as the topologies of many large-scale interconnection networks [19-21], the star
network has such excellent properties as good regularity, symmetry, small diameter, high
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reliability, maximally fault tolerant, and it has a lot of mature and effective algorithms.
However, the embedding for star networks on EH(s, t) was not well studied, although
star networks and EH(s, t) have been widely studied and used in parallel processing and
distributed systems. In this paper, we analyze embedding properties of the star networks
into EH(s, t) and derive a number of results. Thus, we can find the efficient method for
embedding the star networks on EH(s, t), moreover, most mature parallel algorithms for
the star networks can be efficiently simulated on the EH(s, t).

The rest of this paper is organized as follows: in the next section, some fundamental
definitions and notions are introduced, and main results are proved in Section 3. The last
section contains discussions and conclusions.

2. Preliminaries. We need some previous definitions and notations concerning inter-
connection networks and mapping relationship.

Definition 2.1. [20]: Star network is defined as an undirected graph: Sm = (V,E), V is
the set of vertices and V = {(p1, p2, . . ., pm)|pi ∈< m >, pi ̸= pj for i ̸= j}; E is the set
of edges and E = {((p1, p2, . . ., pi, . . ., pm)(pi, p2, . . ., p1, . . ., pm))|(p1, p2, . . ., pi, . . ., pm) ∈ V
and 2 ≤ i ≤ m}, where < m >= {1, 2, . . ., m}, and p is a permutation of < m >, that is
p = (p1, p2, . . ., pi, . . ., pm), pi ∈< m >.

In other words, the set S of all permutations constitutes the nodes or the vertices of
star network. Two vertices u and v are joined by an edge if and only if u = v(1, j) (j ≥ 2),
where (1, j) refers to the transposition by interchanging the first and the jth elements of
permutation p.

Definition 2.2. [13]: The exchanged hypercube is defined as an undirected graph: EH(s, t)
= (V,E) (s ≥ 1, t ≥ 1), V is the set of vertices and V = {as−1. . .a0 bt−1. . .b0c|ai, bj, c ∈
(0, 1), i ∈ [0, s), j ∈ [0, t)}; and E is the set of edges: (1) (v1, v2) ∈ V × V if v1 ⊕ v2 = 1;
(2) v1[s + t, t + 1] = v2[s + t, t + 1], H(v1[t, 1], v2[t, 1]) = 1 if v1[0] = v2[0] = 1; (3)
v1[t, 1] = v2[t, 1], H(v1[s+ t, t+1], v2[s+ t, t+1]) = 1 if v1[0] = v2[0] = 0, where ⊕ denotes
the exclusive-OR operator, v[x, y] denotes the bit pattern of v between dimensions x and
y inclusive. H(v1, v2) denotes the Hamming distance between vertices v1 and v2, where
(v1, v2) ∈ V × V .

Figure 1 shows an exchanged hypercube when s = 1, t = 2.

Definition 2.3. [21]: Let G and H be two undirected graphs. If there exists a mapping
pair < φ, ϕ >, so that for ∀u ∈ G, φ(u) ∈ H, ∀(u, v) ∈ E(G), there is a mapping ϕ
of (u, v) into the paths ϕ((u, v)) of conjoint φ(u) and φ(v) in H, and |G| ≤ |H|, then
< φ, ϕ > is called an embedded mapping pair of G into H, that is G can be embedded into
H.

Figure 1. An exchanged hypercube, EH(1, 2)
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Our objective is to develop simulations with small communication delay (measured by
the dilation of the embedding) and good processor utilization(measured by the expansion
of the embedding) of the star network by EH(s, t).

3. Embedding of Star Networks. In this section, we analyze some properties on em-
bedding of star networks into EH(s, t).

Lemma 3.1. (see [20]) In any embedding G into H with dilation 1, the degree of G should
be less than or equal to the degree of H.

Theorem 3.1. There is no embedding existing for Sn into EH(s, t) with dilation 1, when
max(s, t) < n − 2, (s + t + 1 = ⌈log2(n!)⌉).

Proof: Obviously, the degree of Sn is n − 1. We discuss the degree of EH(s, t) in
two cases. (1) When s ≥ t, the degree of EH(s, t) is s + 1, according to Lemma 3.1,
thus n − 1 ≤ s + 1 ⇒ s > n − 2, and this result is in conflict with known conditions
t ≤ s ≤ n − 2, so there is no embedding existing for Sn into EH(s, t) with dilation 1
when t ≤ s ≤ n− 2. (2) When t ≥ s, the degree of EH(s, t) is t + 1, according to Lemma
3.1, thus n − 1 ≤ t + 1 ⇒ t > n − 2, and this result is in conflict with known conditions
s ≤ t ≤ n−2, so there is no embedding existing for Sn into EH(s, t) with dilation 1 when
s ≤ t ≤ n − 2. From the above, there is no embedding existing for Sn into EH(s, t) with
dilation 1 when max(s, t) < n − 2, (s + t + 1 = ⌈log2(n!)⌉).

Theorem 3.2. For Sn and EH(s, t), where s+t = ⌈log2(n!)⌉ = N , there is an embedding
mapping pair < φ, ϕ > existing for 2 ≤ expansion < 4, dilation = N + 2, congestion =
1, load = 1.

Proof: At first we prove 2 ≤ expansion < 4. Since expansion = |EH(s, t)| / |Sn| =
2s+t+1 /n!, and s + t = ⌈log2(n!)⌉, thus, n! · 2 ≤ 2s+t+1 < n! · 4, and then 2 ≤ expansion
< 4. Obviously load = 1, next we prove dilation = N + 2 in detail. Let φ : V (Sn) →
V (EH(s, t)), for ∀u, v ∈ V (Sn), e = (u, v), φ(u) = as−1as−2 · · · a1a0bt−1bt−2 · · · b1b0c,
φ(v) = a′

s−1a
′
s−2 · · · a′

1a
′
0b

′
t−1b

′
t−2 · · · b′1b′0c′, and there exists an injection ϕ, such that ϕ(e)

is a shortest path from φ(u) to φ(v) in EH(s, t). There are four cases.
(1) When c = c′ = 0, by the definition of EH(s, t), we know ϕ(e) is a shortest path

from φ(u) to φ(v) that must pass though p = a′
s−1a

′
s−2 · · · a′

1a
′
0bt−1bt−2 · · · b1b00, p′ =

a′
s−1a

′
s−2 · · · a′

1a
′
0bt−1bt−2 · · · b1b01, q′ = a′

s−1a
′
s−2 · · · a′

1a
′
0b

′
t−1b

′
t−2 · · · b′1b′01, so the path of

ϕ(e) denotes φ(u) → p → p′ → q → φ(v), and then we can obtain dilation = s+t+1+1 =
N + 2.

(2) When c = 0, c′ = 1, by Definition 2.2, we know ϕ(e) is a shortest path from φ(u)
to φ(v) must pass though p = a′

s−1a
′
s−2 · · · a′

1a
′
0bt−1bt−2 · · · b1b00, p′ = a′

s−1a
′
s−2 · · · a′

1a
′
0bt−1

bt−2 · · · b1b01, that is the path of ϕ(e) denotes φ(u) → p → p′ → φ(v). Hence dilation =
s + t + 1 = N .

(3) When c = 1, c′ = 0, from the above analyses of (2), hence dilation = N .
(4) When c = c′ = 1, according to Definition 2.2, we know ϕ(e) is a shortest path

from φ(u) to φ(v) that must pass though r = as−1as−2 · · · a1a0b
′
t−1b

′
t−2 · · · b′1b′01, r′ =

as−1as−2 · · · a1a0 b′t−1b
′
t−2 · · · b′1b′00, m = a′

s−1a
′
s−2 · · · a′

1a
′
0b

′
t−1b

′
t−2 · · · b′1b′00, that is the path

of ϕ(e) denoting φ(u) → r → r′ → m → φ(v), hence dilation = s + t + 1 + 1 = N + 2.
From the above, Sn can be embedded into EH(s, t) with expansion = 2, dilation = N +2,
congestion = 1, load = 1.

In order to reduce the congestion of embedding, we decompose vertices set into the
set of odd permutations and the set of even permutations, and then obtain the minimum
congestion of odd-even embedding mapping. From the following examples, we know the
cost to achieve smaller congestion is adding the number of bit in EH(s, t).

We represent the nodes of Sn by a permutation of S = {1, 2, 3, . . ., 4m − 1, 4m}, so
we decompose the set S as follows: S = A ∪ B ∪ C ∪ D, A = {1, 2, . . ., m − 1,m},
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B = {m + 1,m + 2, . . ., 2m − 1, 2m}, C = {2m + 1, 2m + 2, . . ., 3m − 1, 3m}, D = {3m+
1, 3m + 2, . . . , 4m − 1, 4m}, and p(j) denotes the element which is position j in the
permutation p; let Ap = {x ∈ A and p(x) /∈ A}, Bp = {x ∈ B and p(x) /∈ B}, Cp = {x ∈
C and p(x) /∈ C}, Dp = {x ∈ D and p(x) /∈ D}, mp is defined as a binary string of length
8m − 3, where mp(j) denotes two bits, namely the (2j − 1)th and (2j)th bits of mp(j),
for all 1 ≤ j ≤ 4m − 2: (1) mp(j) = 00 if p(j) ∈ A; (2) mp(j) = 01 if p(j) ∈ B; (3)
mp(j) = 10 if p(j) ∈ C; (4) mp(j) = 11 if p(j) ∈ D.

Let the last bit of the string mp denoted by last(mp), be given by

last (mp) =


0 if p(4m − 1) ∈ A and p(4m) ∈ A ∪ B ∪ C ∪ D

or p(4m − 1) ∈ B and p(4m) ∈ B ∪ C ∪ D
or p(4m − 1) ∈ C and p(4m) ∈ C ∪ D
or p(4m − 1) ∈ D and p(4m) ∈ D

1 otherwise

Observe that the string mp unambiguously identifies which elements of S are in Ap, Bp,
Cp, Dp, respectively, and moreover, indicates to which set A, B, C, or D each such element
is mapped. The single bit at the end of mp is sufficient, as p is one-to-one and, therefore,
the number of elements mapped by p to each set A, B, C, or D must be identical. So,
if one knows which set contains the image of everything except the last two elements of
S, one can deduce the sets containing the images of the last two elements unambiguously
with the aid of the defined ending bit, last(mp). For example, let 4m = 8 and consider
p = (3, 5, 6, 2, 4, 8, 1, 7), where p is a permutation on S = {1, 2, 3, 4, 5, 6, 7, 8}, let A =
{1, 2}, B = {3, 4}, C = {5, 6}, D = {7, 8}, thus mp(1) = 01 and p(1) = 3, mp(2) = 10
and p(2) = 5, mp(3) = 10 and p(3) = 6, and similarly, mp(4) = 00 and p(4) = 2,
mp(5) = 01 and p(5) = 4, mp(6) = 11 and p(6) = 8, and last(mp) = 0. So, mp is the string
01,10,10,00,01,11,0, which has length 8m−3 = 13. Let AC

p = {x ∈ (S−A) and p(x) ∈ A},
BC

p = {x ∈ (S − B) and p(x) ∈ B}, CC
p = {x ∈ (S − C) and p(x) ∈ C}, DC

p = {x ∈
(S −D) and p(x) ∈ D}, and as p is a one-to-one function, |Ap| =

∣∣Ac
p

∣∣. Place each of the
eight sets Ap, Bp, Cp, Dp, Ac

p, Bc
p, Cc

p, Dc
p in increasing order. Let ai, bi, ci, di denote the

ith element of Ap, Bp, Cp, Dp, respectively, and let ai, bi, ci, di denote the ith element of
Ac

p, Bc
p, Cc

p, Dc
p. Then, we define the function Mp (a permutation on the symbols in S)

by: (1) Mp(x) = x if x /∈ AC
P ∪ BC

P ∪ CC
P ∪ DC

P ; (2) Mp(x) = ai if x = ai; (3) Mp(x) = bi

if x = bi; (4) Mp(x) = ci if x = ci; (5) Mp(x) = di if x = di. By the above definitions,
we can obtain four permutations: pA, pB, pC , pD, and then deduce p = pApBpCpD.
pA = (Mp(p

−1(1), p−1(2), p−1(3), . . ., p−1(m))), pB = (Mp(p
−1(m+1), p−1(m+2), p−1(m+

3), . . ., p−1(2m))), pC = (Mp(p
−1(2m + 1), p−1(2m + 2), p−1(2m + 3), . . ., p−1(3m))), pD =

(Mp(p
−1(3m + 1), p−1(3m + 2), p−1(3m + 3), . . ., p−1(4m))).

Theorem 3.3. For m > 1, d = ⌈log2(m!)⌉, s+ t+1 = 4d+8m−3, there is an embedding
mapping φ existing for S4m into EH(s, t) with dilation = 2d + 6.

Proof: Let p be any permutation on S = {1, 2, 3, . . ., 4m − 1, 4m}, and from the above
analyses, we can partition S into the four sets A, B, C, D. Let w be the embedding of
Sm into EH(s, t), where s + t + 1 = d, d = ⌈log2(m!)⌉. Then, define the embedding φ
for S4m into EH(s, t) by φ(p) = w(pA)w(pB)w(pC)w(pD)mp, where pA, pB, pC , pD and
mp are as described above. It follows that φ is one-to-one and φ(p) is a binary string of
length 4d + 8m − 3, that is s + t + 1 = 4d + 8m − 3. So for the two adjacent nodes p
and q in Sn, it must have p = q · (1, j), where (1, j) denotes a transposition. Moreover,
any transposition of the form (1, j) changes the set Ac

p, Bc
p, Cc

p, Dc
p, that is: one of the

sets Ac
p, Bc

p, Cc
p, Dc

p add or reduce one element since any two permutations of pA, pB, pC ,
pD have deferent two bits. By the definition of mp, we know w(pA) and one other, say
w(pB), change, plus at most four bits in the string mp. Consequently, for p = q · (1, j),
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the string φ(p) and φ(q) differ in at most 2d + 4 bits, and by the definition of EH(s, t),
the shortest distance of φ(p) and φ(q) in EH(s, t) is 2d+4+2 at most, and thus dilation
= 2d + 4 + 2 = 2d + 6.

From the above, S4m can be embedded into EH(s, t) with dilation = 2d + 6.
Using the same strategy, and partitioning the set S into 2i equal size subsets, one

obtains the following more general statement.

Theorem 3.4. For m > 1, i ≥ 1, and d = ⌈log2(m!)⌉, s + t + 1 = 2id + i2im − 2i + 1,
S2im can be embedded into EH(s, t) with dilation = 2d + 2i + 2.

Proof: The proof of Theorem 3.4 follows in the same manner as described earlier
for Theorem 3.3. Let a permutation p on the set S = {1, 2, 3, . . ., 2im − 1, 2im}, and it
can be embedded into EH(s, t) by φ(p) = w(p1)w(p2)w(p3) · · ·w(p2i)mp, where p1, p2,
p3, · · · p2i−1 , p2i , w and mp are defined as above. Using the same strategy, when 1 ≤ j ≤
2im − 2, m(j) is a binary string of length i, and then, the last bit of mp is last(mp) that
the last two bits of p(2im − 1, 2im) are mapped to, so we obtain mp is a binary string of
length i2im − 2i + 1, and moreover, φ(p) is a binary string of length 2id + i2im − 2i + 1,
that is s + t + 1 = 2id + i2im − 2i + 1.

Similar to prove Theorem 3.3, for the two adjacent nodes p and q in Sn, it must have
p = q · (1, j). Any transposition of the form (1, j) changes at most two of the component
permutations, say p1, pK , and changes at most in two bits. As each membership in pK

that maps into mp is binary string of length i, for p = q · (1, j), the string φ(p) and φ(q)
differ in at most 2d + 2i bits, and by the definition of EH(s, t), the shortest distance of
φ(p) and φ(q) in EH(s, t) is 2d + 2i + 2 at most, and thus dilation = 2d + 2i + 2.

From the above, S2im can be embedded into EH(s, t) with dilation = 2d + 2i + 2.

4. Conclusions. EH(s, t) is an important variant of hypercube basing on link removal
from hypercube. For the purpose of extensively investigating the versatility of EH(s, t),
we present several strategies and performance about embedding star networks into EH(s,
t), and evaluate the embedding efficiency measured by dilation, expansion, load and
congestion respectively. These results show that most star networks can be able to embed
into EH(s, t) with low overheads. Thus, mature algorithms of star networks can run
in EH(s, t) effectively and the latter can simulate the former with small communication
delay and good processor utilization.
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