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Abstract. Identifying influential nodes is an important issue in understanding the pro-
cess of information diffusion in complex software networks. Researchers generally define
functions as nodes, and relationship of function calls as edges to map software into com-
plex network. This paper proposes a novel approach to identify the influential nodes
in complex software network based on complex network. Firstly, we map the function
and relationship of function calling or dependency to a directed weighted call network
(DWCN). Secondly, we define NodeScore (NS) to evaluate the importance of nodes in
network. It has higher influence when the node has lager value of NS. The NS of each
node is calculated by two parts in our opinion, Direct Dependency Nodes (DDN) and
Indirect Dependency Nodes (IDN). Thirdly, algorithm ComputeNodeScore is proposed to
calculate NS of each node. Finally, we mine top-k nodes based on the NS. Experimental
results of various versions about software Tar and cflow show the approach is effective
for identifying the influential nodes.
Keywords: Complex software network, Function calls, Influential nodes

1. Introduction. The understanding of software network’s structure has attracted much
attention recently, especially identifying the influential nodes. These influential nodes play
an important part in ensuring reliability and stability of software. Once we have identified
these nodes, we can pay more attention to them in software version updating and software
maintenance [1, 2], even software refactoring [3]. Therefore, identifying influential nodes
in software network has become an important task in software engineering and became
more and more important.

A lot of work has been done in identifying influential nodes in complex network, but less
in software network. Mapping software structure to complex network is important from
different perspectives by different methods. Thus, the research approaches of complex
network can be applied to the research field of software network. Wang et al. [4] proposed
an approach to study the evolution of special software kernel components, which adopted
the theory of complex networks. They also proposed a generic method to find major
structural changes that happened during the evolution of software systems. Li et al. [5]
proposed a modular attachment mechanism of software network evolution. Their approach
treated object-oriented software system as a modular network, which was more realistic. A
new definition of asymmetric probabilities was given to acquire links in directed networks
when new nodes are attached to the existing network. Valverde and Solé [6] presented
a complex network approach to the study of software engineering. They found universal
network patterns in a large collection of object-oriented (OO) software systems. All the
systems analyzed here displayed the small-world effects. It was the first time to study
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the software as a complex software network. The classes were treated as nodes and the
relationships among classes were treated as directed edges. Inspired by the surprising
discovery of several recurring structures in various complex networks, a number of works
treated software systems as complex networks and indicated that software systems expose
the small-world effects and follow scale-free degree distributions. In addition, Cai and Yin
[7] treated software excution process as an evolving complex network for the first time.
They examined there exist invariant patterns in the dynamic behavior of software systems.
The concept of software mirror graph was introduced as a new model of complex network
to reflect the software behavior information.

The mostly used measurements to measure the centrality of nodes are degree centrality
(DC), betweenness centrality (BC), and closeness centrality (CC) [8]. Following, many im-
proved methods were proposed. An approach named Semi-local centrality measure [9] was
proposed. It considered both the nearest and the next nearest neighbors. The approach
was a local centrality measure as a tradeoff between low-relevant degree centrality and
other time-consuming measures. Kitsak et al. [10] realized that the position of nodes is
important in global network and proposed k-shell decomposition analysis to obtain rank-
ing index of nodes. It considered the position of nodes in global network and illustrated
more accurate results than degree and betweenness. However, the k-shell decomposition
fails to implement the ranking of spreaders in the same k-shell index. Bae and Kim [11]
proposed a novel measure called coreness centrality to estimate the spreading influence of
a node in a network, which used the k-shell indices of its neighbors. The approach was
based on the idea that a powerful spreader has more connections to other nodes which
reside in the core of network. The approach also pointed out that the number of a node’s
neighbors has a large influence to its spreading ability. Also, Liu et al. [12] presented an
improved method to generate the ranking list to evaluate the node spreading influence,
which took account of the shortest distance between a target node and node set which has
the highest k-core value. They turned to a new perspective to understand the relationship
between not only the k-shell location, but also the nodes’ shortest distance to the network
core. It is helpful for us to understand the importance of nodes in a network.

Based on the researches above, we find that the influence of a function node depends on
not only the nodes which it calls directly but also the nodes which it calls indirectly. Firstly
we define some concepts to describe our approach, such as DDN (Direct Dependency
Nodes) and IDN (Indirect Dependency Nodes). Then an algorithm ComputeNodeScore
is proposed to measure the influence of each node in the network. We rank the influence
of each node to mine the top-k nodes. These function nodes have played an important
part in ensuring software reliability and stability. So they should be paid more attention
to in the process of software updating and software maintenance.

The rest of this paper is organized as follows. In Section 2 some definitions are proposed
to describe the problem. Then, algorithm ComputeNodeScore used to evaluate each
node is given in Section 3. Experimental results in Section 4 show performances of the
algorithm. Finally, the conclusions and future work of the paper are presented in Section
5.

2. Preliminaries.

Definition 2.1. DWCN (Directed Weighted Call Network). In DWCN, nodes
represent functions and directed edges represent the relationship among functions. We
can use a triple to describe the DWCN.

DWCN = {V,E, AL} (1)

where V is a set of nodes in the network, like {v1, v2, · · · , vi, · · · }. E is a set of directed
edges, {< v1, v2 >,< v2, v3 >, · · · , < vi, vj >, · · · }. AL is an adjacency list stored the
nodes, edges and the score of each node in the network.
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Figure 1. Illustration of a simple DWCN

Figure 1 is the illustration of a simple DWCN.
In this illustration, V = {v1, v2, v3, v4, v5, v6, v7}, E = {< v1, v2 >,< v1, v3 >,< v1,

v4 >,< v2, v5 >,< v2, v6 >,< v5, v7 >}. Each node and the relations with other nodes
in the network have a record in the adjacency list. In addition, the score of each node in
the network is different. It is depended on the nodes which it calls directly and others
which it calls indirectly. For example in Figure 1, node v1 calls nodes v2, v3, v4 by edges
< v1, v2 >, < v1, v3 >, < v1, v4 >. In our approach nodes v2, v3 and v4 have influence
on the importance of node v1. And other nodes like v5, v6 which v1 can reach by edges
< v2, v5 > and < v2, v6 > also have influence on node v1.

Definition 2.2. DDN (Direct Dependency Nodes). For a node vi, DDN is a set
of functions which are called by node vi directly. The DDN of node vi is gotten by only
one call step.

As shown in Figure 1, DDN(v1) = {v2, v3, v4}.
We have mentioned the influence of node vi is based on the nodes it can reach directly

and indirectly.

Definition 2.3. IDN (Indirect Dependency Nodes). IDN is a set of nodes that node
vi can reach indirectly.

In Figure 1, IDN(v1) = {v5, v6, v7}.

Definition 2.4. NS (NodeScore). NS is defined to measure the influence of the node
vi. The NS is given as follows:

NS(v) = p × |DDN | +
∑

p × NS(u), u ∈ IDN(v) (2)

It has higher influence when vi has larger value of NS.

p =
cij

dout
i

(3)

where p is the probability of node vi calling node vj ∈ DDN . The numerator cij is
a constant to represent whether there is an edge between nodes. If there is an edge
< vi, vj >, cij is 1; otherwise, cij is 0. The denominator is the out-degree of node vi.

3. Method of Identifying Influential Nodes. Normally, the software which we map-
ped consisted of functions and function calls among them. Firstly we extracted these from
the source code. Then we map them to a DWCN, and we get the adjacency list at the
same time. Finally, algorithm ComputeNodeScore is used to identify influential nodes by
calculating the NS of each node, as shown in Figure 2.
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Figure 2. Framework of our approach

To measure the NS of node vi, we build adjacency list based on node set N and edge set
E in DWCN. A novel algorithm named ComputeNodeScore is proposed. In this approach,
we evaluate the importance of the node vi iteratively. Finally, we calculate the NS of node
vi.

3.1. Building adjacency list. The result of algorithm BuildAdjacencyList is a part of
DWCN. We study the software as a complex software network and get two sets which are
node set N and edge set E. The process of building adjacency list is based on the two
sets. We build a list for each node.

Algorithm 1 BuildAdjacencyList

Inputs: set V = {v1, v2, · · · , vi, · · · }, set E = {< vs1, ve2 >,< vs2, ve3 >, · · · , < vsi, vej >,
· · · }

Output: OutDegreeList(vi) //the out-degree list of node vi

1: Process:
2: for (each vi ∈ V){
3: for(< vsi, vej >∈ E){
4: if(vi = vsi)
5: OutDegreeList(vi).add(vej);
6: }
7: Return OutDegreeList(vi);
8: }

As shown in algorithm BuildAdjacencyList, for each node in set N we traverse the
edges in set E in line 1 and line 2. We define the nodes of an edge start node vsi and
end node vej respectively. In line 3 to line 4 we add the end node vej of an edge to the
OutDegreeList of node vi, when node vi equals the start node vsi of the edge. Finally, we
calculate the OutDegreeList of vi in line 6.

3.2. Mining influential nodes. Based on the out-degree adjacency list of node vi, we
can calculate NS of each node. Algorithm ComputeNodeScore is used to mine influential
nodes in the software complex network. We calculate the influence from IDN(vi) and
DDN(vi), as shown in algorithm ComputeNodeScore.

As shown in algorithm ComputeNodeScore, we evaluate the influence of a node in the
network by an iterative process. Firstly, we initialize NS of node vi as a constant 0. We
also build a queue for node vi which is stored the set DDN(vi). Line 2 to line 3 is the
process to compute the probability of node vi call node vj ∈ DDN . If the out-degree of
node vi is not equal to 0, we set the possibility to 1/dout

i . Otherwise, the possibility is 0.
Line 4 to line 6 is the process of enqueueing of vj when one of the set DDN(vi) is not in
the queue. Then the NS of node vi in RN is calculated iteratively in line 7. Finally, we
calculate NS of vi in line 10.

Next, we rank the NS of these nodes and mine the top-k influential nodes in the
software network.
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Algorithm 2 ComputeNodeScore

Inputs: node vi, OutDegreeList(vi)
Output: the NS of node vi

1: Process:
2: Initialize NS(vi) = 0
3: if (OutDegreeList [vi] != null) {
4: p = 1/OutDegreeList.size();
5: for (each vj ∈ OutDegreeList [vi]) {
6: if (vj is not in Queue(vi)) {
7: Queue(vj).add(vj);
8: NS(vi)+ = p* NodeScoreNumber(vj);
9: }

10: }
11: NS(vi) = p*OutDegreeList.size() + NS(vi);
12: }
13: else {
14: p = 0;
15: }

4. Experiments and Analysis. In this section,we choose two open source software Tar
and cflow to validate the algorithm ComputeNodeScore. Tar is a decompression software
for Linux, and cflow is an analysis tool for C program to extract the relationship of
function calls (download from the open source software library: Http://sourceforge.net).

Firstly we run the algorithm on each version of Tar and cflow. By the algorithm
ComputeNodeScore, we calculate the NS of each function node. Here we mine top-10
nodes in each version about software Tar and cflow. It is shown in Table 1 and Table 2
respectively.

As it is shown in Table 1, for version tar-1.24, tar-1.25 and tar-1.26, the NodeScore
of the top-10 are almost the same. The reason is that the difference among the three
versions only reflects on the number of function calls. In other words, there is no change
of the component function of these three versions. In the latest two versions, some new
functions added into the software results in the ranking variation. For example, in the
prior versions node name add name ranked 9th but it ranked 36th in version tar-1.27
and tar-1.28. Table 2 shows the top-10 influential functions of software cflow in different
versions. The ranking of a function in each version of cflow varies but with little range.

Table 1. Top-10 influential nodes for each version of software tar

tar-1.24 tar-1.25 tar-1.26 tar-1.27 tar-1.28
function name rank/NS rank/NS rank/NS rank/NS rank/NS

write header name 1/5.00 1/5.00 1/5.00 1/5.00 1/5.00
find next block 2/5.00 2/5.00 2/5.00 2/5.00 2/5.00

write short name 3/4.00 3/4.00 3/4.00 3/4.00 3/4.00
flush archive 4/4.00 4/4.00 4/4.00 4/4.00 4/4.00

gnu flush write 5/3.00 5/3.00 5/3.00 5/3.00 5/3.00
write eot 6/2.67 6/2.67 6/2.67 6/2.67 6/2.67

start header 7/2.56 7/2.56 7/2.56 7/2.56 7/2.56
create archive 8/2.16 8/2.16 8/2.16 9/2.33 8/2.16

name add name 9/2.00 9/2.00 9/2.00 36/1.00 36/1.00
init buffer 10/2.00 10/2.00 10/2.00 10/2.00 10/2.00



490 G. HUANG, X. CHEN, H. WU, P. ZHANG AND J. REN

Table 2. Top-10 influential nodes for each version of software cflow

cflow-1.1 cflow-1.2 cflow-1.3 cflow-1.4
function name rank/NS rank/NS rank/NS rank/NS

parse opt 1/4.00 1/4.00 4/3.00 6/3.00
skip to 2/3.67 2/3.67 1/3.62 1/3.63

get token 3/3.33 3/3.33 2/3.23 3/3.23
add reference 4/3.25 4/3.25 29/2.23 30/2.25
parse knr dcl 5/3.18 5/3.16 3/3.15 4/3.15

main 6/3.06 6/3.06 11/2.94 5/3.01
add name 7/3.00 7/3.00 32/2.00 34/2.00

delete autos 8/3.00 8/3.00 22/2.50 23/2.50
collect symbols 9/3.00 9/3.00 5/3.00 24/2.50

begin 10/3.00 10/3.00 6/3.00 9/3.00
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For example, function skip to’s ranking ranges from 1 to 2. So we can make a prediction
that it may still be more influential than most others in next new version.

In addition, the number of nodes which have high NS is rather small in each version.
These high score nodes have taken a great part in ensuring software reliability and sta-
bility. It means that there are few functions that should be paid more attention to in
software updating and software maintenance. We calculate the percentage of functions’
NS that equal 0 and in the range of (0, 1], (1, 2], (2, 3], (3, 4], (4, 5]. The results of software
Tar and cflow are shown in Figure 3 and Figure 4 respectively.

As we can see in Figure 3, 50% of functions’ NodeScore equals 0. They are ordinary
functions. In other words, we would not pay more attentions to them. Meanwhile, the
NS of nodes around 5 is less than 2% in each version. These 2% nodes that have high
NodeScore should be paid more attention. They play important roles in the process of
software updating and software maintenance. For software cflow, the number percent-
age of nodes in each scope of different versions is shown in Figure 4. It has the same
characteristic with software Tar. The number of nodes with high NS is much less than
the number of low NS. By paying more attention to these influential nodes in future
versions, we can improve software reliability and stability. Thereby we can greatly reduce
the amount of work and improve work efficiency.
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At the same time, the NodeScore of the same ranking nodes within different versions
has slight wave, as show in Figure 5 and Figure 6.

As it is shown in Figure 5, the NS distribution of software Tar is similar extremely in
the five versions. With the increasing of node ranking, the NodeScore of each node shows
a decrease trend. As the lower rank, the score shows a trend of increase. The higher NS
ranges from 4 to 5. Most nodes’ score are around 1 or 2 and others are close to 0. The
development of versions follows the same laws, the node’s NodeScore of a certain ranking
remain stable and the NS distribution of different software version is nearly the same. So,
we can predict the future versions’ trends based on this. Meanwhile, Figure 6 shows the
NS distribution of software cflow, and the curve of each version has the same tendency.
The higher NS ranges from 3 to 4 and most nodes’ score range from 1 to 3. The NS
distribution of software cflow in different versions follows the same trend.

5. Conclusions and Future Work. To make it more convenient and flexible in soft-
ware version updating and software maintenance, a novel method was proposed in this
paper to mine the influential nodes in software network. The algorithm named Com-
puteNodeScore was used to calculate the NodeScore and evaluate the importance of each
node in software network. The method considered the influence from directly dependence
nodes and indirectly dependence nodes. Then, we mine top-k nodes from all nodes by the
NS. Experimental results indicate that the proposed approach is effective and can help
us to identify influential nodes in software network.

Although the approach we proposed shows some feasibilities in identifying influence
nodes in complex software network, the broad validity of our approach should be demon-
strated further. Our future work is using more open-source software network to evaluate
the validity to improve our approach.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China under Grant No. 61170190, No. 61472341 and the Natural Science Foundation
of Hebei Province P. R. China under Grant No. F2013203324, No. F2014203152.

REFERENCES

[1] P. Bhattacharya, M. Iliofotou, I. Neamtiu et al., Graph-based analysis and prediction for software
evolution, Proc. of the 34th International Conference on Software Engineering, pp.419-429, 2012.

[2] P. Hosek and C. Cadar, Safe software updates via multi-version execution, Proc. of the International
Conference on Software Engineering, pp.612-621, 2013.



492 G. HUANG, X. CHEN, H. WU, P. ZHANG AND J. REN

[3] X. Ge and E. Murphy-Hill, Manual refactoring changes with automated refactoring validation, Proc.
of the 36th International Conference on Software Engineering, pp.1095-1105, 2014.

[4] L. Wang, P. Yu, Z. Wang et al., On the evolution of linux kernels: A complex network perspective,
Journal of Software: Evolution and Process, vol.25, no.5, pp.439-458, 2013.

[5] H. Li, H. Zhao, W. Cai et al., A modular attachment mechanism for software network evolution,
Physica A: Statistical Mechanics and Its Applications, vol.392, no.9, pp.2025-2037, 2013.
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