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Abstract. This paper is concerned with the problem of adaptive fuzzy control via output
feedback for a class of nonlinear uncertain single-input single-output strict-feedback sys-
tems. Fuzzy logic systems are used to approximate the packaged nonlinear functions, and
adaptive backstepping technique is applied to constructing control laws of output feedback
and adaptive laws. Furthermore, Lyapunov method is used to prove that all the signals
in the closed-loop systems are semi-globally uniformly ultimately bounded (SUUB), and
the state variables converge to a small neighborhood of the origin. The simulation results
demonstrate the effectiveness of the proposed method.
Keywords: Fuzzy logic systems, Nonlinear strict-feedback systems, Backstepping, SUUB

1. Introduction. In the past decade, adaptive backtepping has aroused wild attention
in the field of nonlinear control [1], because it gives an idea for nonlinear systems without
satisfying the matching requirements. Earlier classical adaptive backstepping is mainly
used for robust control of nonlinear systems with parametric uncertainties. However, a
limitation of these work is that they cannot be applied to the nonlinear systems with
unknown structural uncertainties. In recent years, due to the approximation capability
of fuzzy logic systems and by combining fuzzy logic systems with adaptive backstepping
control, various fuzzy adaptive backstepping control approaches were proposed (see, for
example, [2,3] and the references therein).

Notice that all the above work is based on the condition that the state variables are
measurable, which will limit the applicability of these control methods. As is well known,
the state variables of the controlled systems may be unavailable in many control problems.
Subsequently, fuzzy/neural adaptive control method via output feedback will become very
meaningful. A fuzzy adaptive control approach is developed for a class of SISO strict-
feedback nonlinear systems with unmeasured states in [4], and [5] proposes an adaptive
fuzzy robust control method for SISO nonlinear systems with nonlinear uncertainties,
unmodeled dynamics and dynamic disturbances. In this research, we also consider output-
feedback adaptive fuzzy control for nonlinear strict-feedback systems. Unlike the work
in [4,5], a linear matrix inequality condition, rather than matrix inequality, is proposed
for the stability analysis of the observation error dynamics, and it makes the proposed
control strategy easier to be implemented in practice.

The specific scheme of this paper is that an observer is first designed to estimate
the immeasurable state vector, and fuzzy logic system is employed to approximate the
unknown smooth nonlinear function. Meanwhile, by combining adaptive fuzzy method
with backstepping technology, an adaptive fuzzy controller in output feedback form is
designed. Simulation example is provided to illustrate the effectiveness of the proposed
method. It is worth mentioning that the main contribution of this paper is that a linear
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matrix inequality is used which extends the range space of practical application, in terms
of stability analysis of the observation error dynamics.

2. Preliminaries. Consider the following SISO nonlinear systems in strict-feedback form

ẋi = xi+1 + fi(xi), 1 ≤ i ≤ n − 1

ẋn = u + fn(xn) (1)

y = x1

where xi = [x1, . . . , xi]
T ∈ Rn denotes the state vector. u ∈ R and y ∈ R are the input

and output, respectively. And only output variable y = x1 can be measured directly. fi(.)
(i = 1, 2, . . . , n) stands for the unknown smooth nonlinear function with fi(0) = 0.

Assumption 2.1. For fi(.), there exist known constants hij and hij, such that for 1 ≤
i, j ≤ n, hij ≤ ∂fi

∂xj
≤ hij. It implies that there exists a constant hi > 0, such that

|fi(x)| ≤ hi∥x∥, which means that the strictly increasing smooth function ϕi(s) = hi(s)
with s ∈ R is a bounding function of fi(.).

Lemma 2.1. [7] For zi = x̂i − αi−1, i = 1, 2, . . . , n, the following holds:

∥x̂∥ ≤
n∑

i=1

|zi|ϕi

(
θ̂i

)
with ϕi(θi) = 2 (1 + ki + 0.5) + 1

a2
i
θ̂iS

T
i Si.

3. Main Results. In this section, we will propose an output feedback adaptive fuzzy
control methodology via backstepping for system (1).

3.1. Observer design. The control strategy begins with a state observer as follows:

˙̂xi = x̂i+1 − li(y − x̂1), 1 ≤ i ≤ n − 1
˙̂xn = u − ln(y − x̂1)

(2)

where x̂i is the estimation of xi, (i = 1, . . . , n). li is the design parameter such that

Ao =

[
L In−1

ln 0

] (
LT = [l1, . . . , ln−1]

)
is a strict Hurwitz matrix. Define ei = xi − x̂i,

1 ≤ i ≤ n, and then, from (1) and (2), the error dynamic can be expressed as follows

ė = Aoe + F (x) (3)

where e = [e1, . . . , en]T , F (x) = [f1(x1), . . . , fn(xn)]T .

3.2. Control design and stability analysis. Backstepping design is based on sets of
coordinate transformations, i.e., zi = x̂i − αi−1, for 1 ≤ i ≤ n, with α0 = 0. The virtual
control signal is designed as

αi = −(ki + 0.5)zi −
1

2a2
i

ziθ̂iS
T
i (Zi)Si(Zi) (4)

The control law is

u = −(kn + 0.5)zn − 1

2a2
n

znθ̂nS
T
n (Zn)Sn(Zn) (5)

where ki and ai are the positive design parameters, Zi = [x̂1, . . . , x̂i, θ1, . . . , θi]
T . θ̂i is an

estimation of the unknown constant θi, and it satisfies the following differential equation:

˙̂
θi =

ri

2a2
i

z2
i S

T
i Si − σiθ̂i (6)

where ri and σi are the positive design parameters.
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To construct a control law via backstepping, consider the Lyapunov function as V =
Ve + Vz + Vθ, where Ve = eT Pe, Vz =

∑n
i=1

1
2
z2

i , Vθ =
∑n

i=1
1

2ri
θ̃2

i with θ̃i = θi − θ̂i.

According to (3), one has

V̇e = eT
(
PAo + AT

o P
)
e + 2eT P (F (x) − F (x̂)) + 2eT PF (x̂) (7)

2eT P (F (x) − F (x̂)) = 2eT PJe (8)

where J is the Jacobi matrix, its element is [J ]ij, if j ≤ i, [J ]ij = ∂fi

∂xj
, then [J ]ij = 0.

Furthermore, by Assumption 2.1, ∂fi

∂xj
can be expressed as a convex combination of hij

and hij. Namely, there exists a function 0 ≤ µij(t) ≤ 1 such that

∂fi

∂xj

= µijhij + (1 − µij)hij (9)

Substituting (9) into (8) results in

2eT P (F (x) − F (x̂)) = 2eT P
(
H + H

)
e (10)

where
[
H
]
ij

= µijhij,
[
H
]
ij

= (1 − µij)hij.

By Assumption 2.1 and Lemma 2.1, one can get

2eT PF (x̂) ≤ ε0e
T e + c

n∑
i=1

z2
i ϕ

2
i

(
θ̂i

)
(11)

with c = nε0
−1 ∥P∥2∑n

i=1 h2
i .

Substituting (10) and (11) into (7), one can get

V̇e ≤ eT
(
PAo + AT

o P + P
(
H + H

)
+
(
H + H

)T
P + ε0I

)
e + c

n∑
i=1

z2
i ϕ

2
i

(
θ̂i

)
(12)

Letting

Vz =
n∑

i=1

Vi =
n∑

i=1

1

2
z2

i (13)

one can get

V̇i = zi(αi − lie1 − α̇i−1) + zizi+1 (14)

From (4), one can get

α̇i =
i∑

j=1

(
∂αi

∂x̂j

(x̂j+1 − lje1) +
∂αi

∂θ̂j

(
rj

2a2
j

z2
j S

T
j Sj − σj θ̂j

))
(15)

Furthermore, V̇i can be expressed as

V̇i = zi

(
αi −

i−1∑
j=1

∂αi−1

∂x̂j

x̂j+1 −
i−1∑
j=1

∂αi−1

∂θ̂j

(
rj

2a2
j

z2
j S

T
j Sj − σj θ̂j

))

+zi

(
i−1∑
j=1

∂αi−1

∂x̂j
lje1 − lie1

)
+ zizi+1

(16)

For the crossing term zi

(∑i−1
j=1

∂αi−1

∂x̂j
lje1 − lie1

)
, it satisfies

zi

(
i−1∑
j=1

∂αi−1

∂x̂j

lje1 − lie1

)
≤ 1

2βi

z2
i

(
i−1∑
j=1

∂αi−1

∂x̂j

lj − li

)2

+
1

2
βie

2
1 (17)
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where βi is a positive constant. Taking (16) with (17) into account gives

V̇i ≤ zi

(
αi −

i−1∑
j=1

∂αi

∂x̂j

x̂j+1 −
i−1∑
j=1

∂αi

∂θ̂j

(
rj

2a2
j

z2
j S

T
j Sj − σj θ̂j

))

+
1

2βi

z2
i

(
i−1∑
j=1

∂αi−1

∂x̂j

lj − li

)2

+
1

2
βie

2
1 + zizi+1 (18)

Especially, the time derivative of Vn = 1
2
z2

n is given by

V̇n = zn(u − α̇n−1 − lne1) (19)

At the present stage, define

f i = −
i−1∑
j=1

∂αi

∂x̂j

x̂j+1 −
i−1∑
j=1

∂αi

∂θ̂j

(
rj

2a2
j

z2
j S

T
j Sj − σj θ̂j

)

+
1

2βi

zi

(
i−1∑
j=1

∂αi−1

∂x̂j

lj − li

)2

+ cziϕ
2
i

(
θ̂i

)
+ zi−1 (20)

fn = zn−1 − α̇n−1 − lne1 + cznϕ2
n

(
θ̂n

)
(21)

with z0 = 0. Thus, taking (13), (18)-(21) into account together gives

V̇z ≤
n∑

i=1

zi

(
αi + f i

)
+

n−1∑
i=1

1

2
βie

2
1 − c

n∑
i=1

z2
i ϕ

2
i

(
θ̂i

)
(22)

with αn = u. According to [6], fuzzy logic system W T
i Si(Zi) is now utilized to approximate

the unknown function f i such that for any given εi > 0, f i = W T
i Si(Zi) + δi(Zi) with δi

satisfying |δi| ≤ εi being an approximation error. Thus, one has, for 1 ≤ i ≤ n,

zif i ≤
1

2a2
i

z2
i θiS

T
i Si +

1

2
a2

i +
1

2
z2

i +
1

2
ε2

i (23)

where θi = ∥Wi∥2.
From (4), one can get

znu = −(kn + 0.5)z2
n − 1

2a2
n

z2
nθ̂nS

T
n Sn (24)

Substituting (4), (23) and (24) into (22), one can get

V̇z ≤ −
n∑

i=1

kiz
2
i +

n∑
i=1

1

2a2
i

z2
i θ̃iS

T
i Si +

n∑
i=1

1

2

(
a2

i + ε2
i

)
+

n−1∑
i=1

1

2
βie

2
1 − c

n∑
i=1

z2
i ϕ

2
i

(
θ̂i

)
(25)

For Vθ =
∑n

i=1
1

2ri
θ̃2

i , its time derivative is

V̇θ = −
n∑

i=1

1

ri

θ̃i
˙̂
θi (26)

Thus, from (12), (25) and (26), one can get

V̇ ≤ eT
(
PAo + AT

o P + P
(
H + H

)
+
(
H + H

)T
P + ε0I + β

)
e

−
n∑

i=1

kiz
2
i +

n∑
i=1

1

2
(a2

i + ε2
i ) +

n∑
i=1

1

ri

θ̃i

(
ri

2a2
i

z2
i S

T
i Si − ˙̂

θi

) (27)

with β = diag

[
n−1∑
i=1

1
2
βi, 0, . . . , 0

]
. Thus, we can get the results in the following theorem.
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Theorem 3.1. Consider system (1) satisfying Assumption 2.1, and construct observer
(2). Suppose that the packaged nonlinear function f i can be approximated by fuzzy logic
systems in the sense that the approximate errors are bounded. If there exists definitive
positive matrix P , such that

PAo + AT
o P + PMα + MT

α P + ε0I + β < 0

where Mα ∈ Ξ =
{
M |[M ]ij = hij, or [M ]ij = hij, 1 ≤ i, j ≤ n

}
, and α = 2

n(n+1)
2 . The

control law (5) and the adaptive law (6) guarantee that all the closed-loop signals are
SUUB and all the variables of the closed-loop system can converge to a small enough
neighborhood around the origin by choosing appropriate design parameters.

Proof: By the definition of
˙̂
θi, the following holds

n∑
i=1

1

ri

θ̃i

(
ri

2a2
i

z2
i S

T
i Si − ˙̂

θi

)
=

n∑
i=1

σi

ri

θ̃iθ̂i ≤
n∑

i=1

σi

ri

(
−1

2
θ̃2

i +
1

2
θ2

i

)
(28)

Thus, taking (26) into account with (28), one can get

V̇ ≤ eT
(
PAo + AT

o P + P
(
H + H

)
+
(
H + H

)T
P + ε0I + β

)
e

−
n∑

i=1

kiz
2
i +

n∑
i=1

1

2

(
a2

i + ε2
i +

σi

ri

θ2
i

)
−

n∑
i=1

σi

2ri

θ̃2
i

(29)

with H and H being the time-varying matrices, and they lead to the result that stability
analysis becomes very difficult. To overcome this difficulty, we will develop the time-
independent LMI stability conditions for the error dynamic system in the following.

For notation simplicity, let Iij denote the n-order square matrix which element [Iij]mk =

1 for m = i and k = j, and others are 0. Thus, according to the definition of H and H,
the following equality holds

H + H =
n∑

i,j=1

(
µijhij + (1 − µij) hij

)
Iij (30)

where µij is a function and satisfies 0 ≤ µij ≤ 1. As a result,

PAo + AT
o P + P

(
H + H

)
+
(
H + H

)T
P + ε0I + β < 0 (31)

is equivalent to

PAo + AT
o P +

n∑
i,j=1

(
µijhij + (1 − µij) hij

)
PIij

+
n∑

i,j=1

(
µijhij + (1 − µij) hij

)
IT
ijP + ε0I + β < 0

(32)

According to convex combination theory, (32) is equivalent to

PAo + AT
o P + PMα + MT

α P + ε0I + β < 0 (33)

In addition, when inequality (33) holds, there exists a constant α > 0, such that for all α

eT
(
PAo + AT

o P + P (H + H) +
(
H + H

)T
P + ε0I + β

)
e ≤ − α

λM(P )
eT Pe (34)

where λM(P ) denotes the maximal eigenvalue of matrix P .
Thus, from (29) and (34), one can get

V̇ ≤ − α

λM(P )
eT Pe −

n∑
i=1

kiz
2
i −

n∑
i=1

σi

2ri

θ̃2
i +

n∑
i=1

1

2

(
a2

i + ε2
i +

σi

ri

θ2
i

)
(35)

Now, take a0 = min
{

α
λM (P )

, 2ki, σi|i = 1, 2, . . . , n
}

, b0 =
∑n

i=1
1
2

(
a2

i + ε2
i + σi

ri
θ2

i

)
.
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Then one can get

V̇ ≤ −a0V + b0 (36)

which implies that all the closed-loop signals are bounded. Especially, for any given η > 0,
by appropriately choosing ai, εi, σi to be sufficiently small, as well as ri to be sufficiently
large, it is possible to let b0/a0 ≤ η.

4. Simulation Example. The feasibility of the proposed method is tested by an exam-
ple.

Example 4.1. Consider the following single-link robot system in [8].

ẋ1 = x2

ẋ2 =
u − 0.5mgl sin(x1)

M
y = x1

(37)

with m = 1 kg, M = 0.5 kg/m2, l = 1 m. The observer gain is L = [−6.5751, −57.1814]T

and the control parameters are a1 = a2 = 1, r1 = r2 = 3, k1 = k2 = 20 and σ1 = σ2 =
0.005. As done in [8], the initial conditions are chosen as x1(0) = −1.2, x2(0) = 0.8,
x̂1(0) = x̂2(0) = 0 and θ1(0) = 0.

Figures 1 and 2 show the state and observed state responses. Figure 3 illustrates the
trajectory of adaptive parameter θ1. Figure 4 plots the trajectory of control input signal u.

Figure 1. x1 (“-”) and x̂1 (“- -”) Figure 2. x2 (“-”) and x̂2 (“- -”)

Figure 3. Adaptive parameter θ1 Figure 4. Control input signal u
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From the simulation results, we can see that the state variables converge to a small neigh-
borhood of the origin. In other words, the simulation results illustrate the effectiveness of
the proposed scheme and control performances can be achieved well as in [8]. However,
the number of adaptive parameter is only one in our paper, while the number is 7 in [8].
Thus, the burden computation burden is alleviated.

5. Conclusions. In this paper, adaptive fuzzy output feedback control is considered for
a class of single-input single-output nonlinear strict-feedback systems. In the process of
controller design, fuzzy logic system is used to approximate unknown smooth nonlinear
function and by combining backstepping technology, an adaptive fuzzy logic system is
designed. The scheme guarantees all the signals of close-system are SUUB.
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