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Abstract. This paper presents a novel three-dimension (3D) object pose tracking al-
gorithm, which is an important function to implement a robust vision system using a
monocular camera. The proposed algorithm is based on a novel computer-aided design
(CAD) model-based contour fitting algorithm, which is a nonlinear optimization process
for estimation of the optimal object pose using a contour-based distance metric. Given
a CAD model of the object-of-interest, the proposed system first computes a projected
contour model of the object in the image plane. Then, the 6-DOF pose of the object is
estimated by minimizing sum of fitting errors between the projected contour model and
the detected contour of the object in a captured image. Experiment results show that the
proposed pose tracking algorithm not only efficiently estimates 3D pose of the object, but
also overcomes partially occlusion problem during visual tracking process.
Keywords: 3D object pose tracking, Object pose estimation, Contour fitting, Nonlinear
optimization

1. Introduction. In recent years, visual sensing systems have become more and more
popular used in robotic studies. For example, industrial robot manipulators require the
information of 3D pose of an object-of-interest (OOI) in order to perform complex pick-
and-place tasks. In this case, vision-based pose tracking techniques provide an efficient
solution to track 3D pose of the OOI for the robot to automatically complete more complex
tasks.

Estimation of 3D pose information of targets is an important task in applications of
robot manipulation, but it is also a difficult task because of most visual sensing systems
only providing 2D images without depth information. Therefore, the development of a
vision-based pose tracking system to estimate the 3D pose information of an OOI from
2D images of the OOI is an important issue in practice. To develop a vision-based 3D
pose tracking system, the existing object pose estimation techniques are roughly divided
into feature-based and model-based tracing methods. The former uses basic geometric
features (such as points, lines, and circles), boundary contours [1,2], and regions of interest
[3] of the object to estimate 3D pose of the OOI appearing in the image, and the latter
uses a priori-constructed 3D CAD model of the target to detect the OOI in the image
while tracking its 3D pose in camera frame [4]. Empirically, the model-based tracking
approaches can provide better robustness than the feature-based ones; even the OOI is
suffered from the partial occlusion problem [5] in a complex work environment.

To enable six degree-of-freedom (6-DOF) pose tracking, a fast and efficient method
attaches an artificial mark to the OOI to simplify the computation of object detection
and pose tracking processes [6]. This method is a simple and robust design to address the
6-DOF pose estimation problem; however, it only works with an additional marker on the
OOI. In contrast, many researchers focused on the development of natural feature-based
3D pose tracking methods, which can be divided into keypoint-based and edge-based pose

563



564 C.-Y. TSAI, W.-Y. WANG AND S.-H. TSAI

tracking methods [7]. Keypoints are image features that can be repeatedly detected in
images robust to translation, scaling, and rotation transformations. In keypoint-based
approaches, the keypoints are first extracted from incoming images to detect the OOI
using a keypoint matching operation. Then, a keypoint classifier, which was trained from
a large training dataset with different view ports of the OOI, is used to directly determine
the 6-DOF pose information of the OOI. By doing so, the 3D pose tracking problem is
simplified as a keypoint recognition problem, which can be efficiently resolved using fast
nearest neighbor keypoint matching methods, such as k-d tree method [8], and multiple
random trees method [9].

On the other hand, edge-based pose tracking methods employ a 3D CAD model of the
OOI to estimate its 6-DOF pose from the observed OOI image. In [10], Harris introduced
a real-time attitude and position determination (RAPiD) algorithm, which is a real-time
model-based tracking method for a known 3D object executing arbitrary motion observed
from a single video camera. In [11], Choi and Christensen combined a global and a local
pose estimation design to implement a RAPiD style tracking system. In global pose
estimation, a keypoint-based object recognition method was employed to decide initial
pose information of the OOI detected from the image. In local pose estimation, an edge-
based back-projection fitting algorithm was developed to continuously track its 6-DOF
pose using a given 3D CAD model of the OOI. The RAPiD style tracking system is an
efficient 6-DOF pose tracking system; however, only polygon mesh models can be used as
the object CAD model in this system.

In this study, a novel contour-based nonlinear model fitting algorithm is proposed to
implement an image-based 6-DOF pose tracking system using a monocular camera. The
proposed method is a nonlinear contour fitting process based on an edge-based distance
metric, which can work with 3D polygon edge and polygon mesh models to address model-
based 3D pose tracking problem efficiently. Suppose that a 3D CAD model of the OOI is
known a priori. Then, the proposed model-based 3D pose tracking algorithm employs the
CAD model to estimate 3D pose of the OOI with respect to (w.r.t.) the camera frame of a
vision system from an observed object image by minimizing sum of fitting errors between
the projected contour model and the detected contour of the OOI through a nonlinear
optimization process. This feature allows increasing the robustness and applicability of a
robotic vision system. Experimental results demonstrate the pose tracking performance
of the proposed method.

In the remainder of the paper, Section 2 introduces the proposed CAD model-based 3D
object pose estimation algorithm. Section 3 presents the experimental results to evaluate
the effectiveness and efficiency of the proposed model-based 6-DOF pose tracking method.
Section 4 concludes the contributions of this paper.

2. The Proposed Method. Figure 1 shows the flowchart of the proposed 6-DOF pose
tracking system. Suppose that an OOI has been detected in the image by an object
detector. Then, the contour lines of the OOI are extracted from the detected object
image using contour detection and Hough transform techniques. In this work, the Canny
edge detector combined with straight line Hough transform was used to extract contour
lines of the detected OOI. Given a known CAD model of an OOI, a line matching process is
employed to find the nearest edges between the detected contour lines and the projection
of the CAD model without hidden lines. Next, the 6-DOF pose of the OOI can be
estimated through a nonlinear contour fitting process, which is the main subject of this
paper.

After matching the detected contour lines of the OOI and the contour lines of the model
projection, the proposed nonlinear model fitting process aims to estimate the 6-DOF pose
of the OOI by fitting the contour projection of the CAD model to the observed contour
lines of the OOI. Let R and T denote a quaternion rotation matrix [12] and a translation
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Figure 1. Flowchart of the proposed 6-DOF pose tracking system

vector such that
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T(tx, ty, tz) =
[

tx ty tz
]T

(2)

where (wq, xq, yq, zq) are the four components of a quaternion, and (tx, ty, tz) are the three
components of a translation vector. Suppose that a camera intrinsic matrix K is computed
a priori via a camera calibration process [13]. Let Xc = [xc, yc, zc]

T denote a 3D control
point on the target CAD model, and pi = [xi, yi]

T is the corresponding image coordinate
of Xc projected onto image plane. Then, the image control point pi can be obtained by
perspective projection of Xc w.r.t. an object pose P = (wq, xq, yq, zq, tx, ty, tz) in camera
frame such that

p̃i(P) = sK
[

R(P) T(P)
]

X̃c (3)

where s is a scale factor. Furthermore, p̃i and X̃c are the homogeneous coordinates of pi

and Xc, respectively.
Now we define an edge-based distance metric for the nonlinear contour fitting process.

Suppose that a 2D Hough line located on the contour of the detected OOI is parameterized
by h = (a, b, c). Then, the distance between the image control point pi and the 2D Hough
line is computed by

d(h,pi) =
|axi + byi + c|√

a2 + b2
(4)

where d can be defined as a fitting error between the image control point pi and the
detected contour model in image plane. Suppose that there are m Hough lines, each
of them having nj corresponding image control points. Then, a nonlinear cost function
to evaluate the fitting error between the projection of the CAD model and the detected
contour model of the OOI w.r.t. an object pose in camera frame is defined as

f(P) =

m
∑

j=1

nj
∑

k=1

d
(

hj ,p
jk
i (P)

)

(5)

where P is the object pose in camera frame defined previously, and p
jk
i denotes the k-th

image control point corresponding to the j-th Hough line. Finally, the optimal object
pose can be estimated by minimizing the cost function f(P) such that

P̂ = arg min
P

f(P) (6)
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where P̂ is the optimal object pose. Note that the initial value of P was set as (1, 0, 0,
0, 0, 0, 0) in our implementation, and the Levenbrg-Marquardt algorithm was used to
resolve the nonlinear fitting problem defined in (6). The performance of the nonlinear
contour fitting algorithm described above is validated in the next section.

3. Experimental Results. Figure 2(a) shows the 3D polygon CAD model used in the
experiments, which is a rectangular cube model containing twelve line features. Figure
2(b) shows a rectangular box used as the target to be tracked in the pose tracking exper-
iments. Figure 3 presents the experimental results of the proposed model-based 6-DOF
pose tracking algorithm. Figures 3(a1)-3(a3) show the pose tracking results obtained from
the proposed algorithm when the target rotated along y-axis. It is clear that the proposed
algorithm successfully fits the contour lines between the projected CAD model and the
detected OOI in the incoming images. Similar results also can be observed from Figures
3(b1)-3(b3), in which the target rotated along a different axis. Table 1 records the 6-DOF
pose tracking results of the target shown in Figure 3. From Table 1, the yaw angle of the
target firstly is changed from −0.1515◦ to −14.8174◦ as the OOI rotates left along y-axis.
Next, the pitch angle of the target is changed from −5.1972◦ to −13.2776◦ when the OOI
rotates left along x-axis. Thus, the proposed tracking algorithm successfully estimates
the motion trajectory of the target in camera frame. Moreover, Figure 4 shows the pose
tracking results under partial occlusion conditions. It is clear that the proposed algo-
rithm can overcome partial occlusion problem during pose tracking process. Therefore,
the above experimental results validate the tracking performance and robustness of the
proposed method.

4. Conclusions and Future Work. A novel CAD model-based 6-DOF pose tracking
algorithm is presented in this paper. The proposed algorithm is a nonlinear contour
fitting process based on a new edge-based distance metric. Experimental results validate
the tracking performance and robustness of the proposed method. In future work, some

(a) (b)

Figure 2. Experimental setup: (a) the 3D polygon CAD model used in
the experiments, and (b) the target object used in the experiments

Table 1. 6-DOF pose tracking results

Figure 3 (a1) (a2) (a3) (b1) (b2) (b3)
Pitch (degree) −0.9762 −0.4792 −1.4983 −5.1972 −13.0595 −13.2776

Yaw (degree) −0.1515 −9.0573 −14.8174 0.3372 −1.3862 2.4264
Roll (degree) 4.4816 10.0169 11.0560 −0.9124 −0.5219 0.3422

tx (m) 0.0016 0.1100 0.1803 −0.0178 −0.0274 −0.0383
ty (m) 0.0083 0.0023 −0.0032 0.05379 0.1309 0.1369
tz (m) 0.0063 −0.0117 0.0009 −0.0028 0.0375 0.0343
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 3. Experimental results of the proposed model-based pose tracking algorithm

(a) (b) (c)

Figure 4. Pose tracking results under partial occlusion conditions

comparisons between the proposed method and previous methods will be carried out to
further validate the advantage of the proposed algorithm.
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