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Abstract. Randomness and fuzziness are two common uncertainties in multi-objective
problems. They often coexist in real decision process. So it is a hot topic on processing
the two uncertainties in academic and application fields. In this paper, for the multi-
objective problems with fuzzy goals and random coefficients, we first analyze the essential
characteristics of fuzzy decision and review the effect probability’s preliminaries of fuzzy
events. Then we give several effect probabilities (denoted by EP) formulas with normal
distribution for special fuzzy events represented by fuzzy numbers. Further, we establish a
multi-objective programming model based on EP by regarding fuzzy goals as fuzzy events.
Finally, we illustrate the validity of multi-objective model based on EP through a case.
Keywords: Fuzzy events, Effect probability, Multi-objective programming, Decision
making

1. Introduction. Randomness and fuzziness are two common uncertainties in the real
problems. Although there exist essential differences, they are always coexistent in complex
system optimization, decision analysis and many other fields. For example, one company
sets two goals that “the sales are not less than 1000 as far as possible” and “total equip-
ment time is about 40 hours” for a production while the demand and the produce time
are random variable obeying some distribution. Obviously, fuzziness and randomness are
unavoidable in multi-objective problems and effective processing them is a hot topic in
academics and applications. Many scholars have studied on this topic in combination
with different methods and theories.

In 1772, Franklin firstly proposed the coordination multi-objective problems with many
inconsistent goals. Thereafter, Pareto [1] presented multi-objective optimization decision
making problems in 1896. Then many scholars have given deep research on it under dif-
ferent theories and backgrounds. Charnes and Cooper [2] established the multi-objective
linear programming based on priority factors in 1961. Yang and Zheng [3] studied on
the solutions to multi-objective programming based on investment analysis; Han et al.
[4] proposed a multi-objective programming model as an alternative approach for solving
network DEA through data envelopment analysis; Dujardin et al. [5] proposed a multi-
objective interactive system for adaptive traffic control by regarding the total waiting
time, the number of stops for private vehicles and a public transport criterion as deci-
sion goals. Besides, stochastic multi-objective programming and fuzzy multi-objective
programming were formed by combining with random theory and fuzzy set theory. Hul-
surkar et al. [6] proposed a fuzzy programming to solve the multi-objective stochastic
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programming. Azaron et al. [7] studied on multi-objective programming with uncertain
parameters under the supply chain environment and the Pareto solution was given. Cebi
and Otay [8] developed multi-objective linear mathematical model for project network
problem under fuzziness on the basis of assuming the parameters were uncertain. Bustos
et al. [9] established a stochastic multi-objective programming model for transportation
problems.

At present, many scholars have studied on the process problems of uncertainties in
multi-objective programming, but there still exist two shortcomings: 1) they only consid-
ered one uncertainty and ignored the other; 2) they ignored the different effect of fuzzy
decision preference in the decision process. In this paper, for the multi-objective problems
with fuzzy goals and random coefficients, we mainly do the following contributions: 1)
we give several effect probability (denoted as EP) formulas for special fuzzy events; 2)
we establish a multi-objective programming model based on EP; 3) we further analyze
its characteristics through a case. The rest of the paper is structured with Section 2 re-
viewing the preliminaries of EP. Section 3 proposed several EP formulas for fuzzy events.
Section 4 established a multi-objective programming model based on EP by regarding
fuzzy goals as the fuzzy events. Combined with a case, we compared this model with that
based on priority factors in Section 5, followed by conclusions in Section 6.

2. Preliminaries. For convenience, in this paper: 1) (Ω,B, P ) denotes the probability
space (B denotes a σ-algebra composed by some subsets of Ω, P (∗) : B → [0, 1], and
satisfies: 1) P (ϕ) = 0, P (Ω) = 1; 2) P (

∪∞
n=1 Ai) =

∑∞
n=1 P (Ai), when {An}∞n=1 ⊂ B

and any two are incompatible); 2) For A ∈ F (Ω), A(x) denotes the membership function
of A, Aλ = {x|x ∈ U, A(x) ≥ λ} is the λ-level set (or λ-set) of A; 3) F (Ω) denotes an
entirety of fuzzy sets (that is the mapping from Ω to [0,1]).

The concept of fuzzy event probability was proposed by Zadeh in 1968 [10]. Then the
measurement and application have attracted much attention among academic field. In
2008, Chen et al. [11] established the fuzzy event probability measurement by combining
with decomposition theorem of fuzzy set.

P (A) =

∫ 1

0

P (Aλ)dλ. (1)

According to the decomposition theorem, if we view λ ∈ [0, 1] as a qualification standard
for the elements in Ω during the fuzzy decision making process, then we can regard Aλ

as a relatively crisp description of A. The fuzzy event A can be viewed as a family of
crisp events {Aλ|λ ∈ [0, 1]}. Obviously, Equation (1) has good structural characteristics.
However, it is worth noting that Equation (1) does not consider the nonlinear features
of membership states in decision making which can reflect the essence of fuzzy decision
under certain degree.

In 2015, Li and Jie [12] analyzed the effect characteristics of different level sets and
proposed the level effect function L(λ) which maps from [0, 1] to [0, +∞). And it should
satisfy the following basic principles:

Principle 1: The effect of threshold is monotonous, i.e., L(λ) is monotone non-
decreasing on [0, 1].

Principle 2: The effect of threshold is continuous, i.e., L(λ) is continuous on [0, 1].

Principle 3: The sum of effect equals one, i.e.,
∫ 1

0
L(λ)dλ = 1.

Intuitively speaking, L(λ) can be understood as a quantitative decision making param-
eter reflecting the recognized degree of decision making based on the level λ. The size of
λ reflects the recognized degree under some extent. The larger (smaller) λ is, the higher
(lower) recognized degree is. Li and Jie [12] regarded the recognized effectiveness and the
corresponding probability consequence as a local description and built the following fuzzy
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probability measurement of fuzzy set A according to Equation (1):

P (A ⊕ L(λ)) =

∫ 1

0

L(λ)P (Aλ)dλ. (2)

We call Equation (2) the effect probability based on level effect (denoted as effect proba-
bility and EP for short).

It is obvious that if A is a crisp event on the space (Ω, B, P ) (it means A is a crisp set on
Ω and A ∈ B), then P (A ⊕ L(λ)) = P (A) for any level effect function L(λ). It indicates
that Equation (2) is the generalization of the classical probability measurement model.
Equation (2) reflects the decision preference of decision makers by the effect of different
membership status. It has the theoretical and practical value. Also normal distribution
is the most common probability distribution and has good formula and application value.
So we will discuss several special effect probability calculations with normal distribution
in the next section.

3. Several Effect Probability Formulas for Fuzzy Events. Fuzzy number is an
effective tool to describe fuzzy information by membership in decision making process.
So it is nature to represent fuzzy events by fuzzy number. In the following, we will
further discuss the EP with normal distribution for fuzzy events represented by fuzzy
number based on double integral.

Theorem 3.1. Let X be a variable obeying standard normal distribution N(0, 1) in prob-
ability space (Ω,B, P ). L(λ) = nλn−1, n ≥ 1, A = (a, b, c) and a < b < c, then

P ({X ∈ A} ⊕ L(λ)) =
G(a, b, n)

(b − a)n
+

G(−c,−b, n)

(c − b)n
. (3)

Here, G(α, β, m) =
∫ β

α
(x − α)m 1√

2π
e−

x2

2 dx.

Proof: By Aλ = [a + (b − a)λ, c − (c − b)λ] and the density function f(x) = 1√
2π

e−
x2

2 ,

we know

P ({X ∈ A} ⊕ L(λ)) =

∫ 1

0

nλn−1

∫ c−(c−b)λ

a+(b−a)λ

1√
2π

e−
x2

2 dxdλ

=

∫ b

a

1√
2π

e−
x2

2

∫ x−a
b−a

0

nλn−1dλdx +

∫ c

b

1√
2π

e−
x2

2

∫ c−x
c−b

0

nλn−1dλdx

and ∫ b

a

1√
2π

e−
x2

2

∫ x−a
b−a

0

nλn−1dλdx =
1

(b − a)n

∫ b

a

(x − a)n 1√
2π

e−
x2

2 dx,

∫ c

b

1√
2π

e−
x2

2

∫ c−x
c−b

0

nλn−1dλdx =
1

(c − b)n

∫ c

b

(c − x)n 1√
2π

e−
x2

2 dx

=
1

(c − b)n

∫ −b

−c

(c + x)n 1√
2π

e−
x2

2 dx.

Theorem 3.1 holds.
Theorem 3.1 presents the EP formula with standard normal distribution. However,

nonstandard normal distribution is more common in real decision making environment.
So we present the EP formula with nonstandard normal distribution.
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Theorem 3.2. Let X be a variable obeying normal distribution N (µ, σ2) in probability
space (Ω, B, P ). L(λ) = nλn−1, n ≥ 1, A = (a, b, c) and a < b < c, then

P ({X ∈ A} ⊕ L(λ)) =
σ2G

(
a−µ

σ
, b−µ

σ
, n

)
(b − a)n

+
σ2G

(
µ−c
σ

, µ−b
σ

, n
)

(c − b)n
. (4)

Proof: By the probability density function of N (µ, σ2) f(x) = 1√
2π

e−
(x−µ)2

2σ2 , we know

P ({X ∈ A} ⊕ L(λ)) =

∫ 1

0

nλn−1

∫ c−(c−b)λ

a+(b−a)λ

1√
2π

e−
(x−µ)2

2σ2 dxdλ

=

∫ 1

0

nλn−1

∫ c−µ+(c−b)λ
σ

a−µ+(b−a)λ
σ

1√
2π

e−
u2

2 dudλ

=

∫ 1

0

nλn−1

∫ c−µ
σ

−( c−µ
σ

− b−µ
σ )λ

a−µ
σ

+( b−µ
σ

−a−µ
σ )λ

1√
2π

e−
u2

2 dudλ

= P

({
U ∈

(
a − µ

σ
,
b − µ

σ
,
c − µ

σ

)}
⊕ L(λ)

)
.

Theorem 3.2 holds based on Theorem 3.1.
Further, we can get the following corollaries based on Theorem 3.1 and Theorem 3.2.

Corollary 3.1. Let X be a variable obeying standard normal distribution N(0, 1) in prob-
ability space (Ω,B, P ). L(λ) = nλn−1, n ≥ 1, A = (a, b, c) and a < b < c, then

P ({X ∈ (a, b, b)} ⊕ L(λ)) =
G(a, b, n)

(b − a)n
, (5)

P ({X ∈ (b, b, c)} ⊕ L(λ)) =
G(−c,−b, n)

(c − b)n
. (6)

Corollary 3.2. Let X be a variable obeying normal distribution N (µ, σ2) in probability
space (Ω, B, P ). L(λ) = nλn−1, n ≥ 1, A = (a, b, c) and a < b < c, then

P ({X ∈ (a, b, b)} ⊕ L(λ)) =
σ2G

(
a−µ

σ
, b−µ

σ
, n

)
(b − a)n

, (7)

P ({X ∈ (b, b, c)} ⊕ L(λ)) =
σ2G

(
µ−c
σ

, µ−b
σ

, n
)

(c − b)n
. (8)

Note 1: For L(λ) = nλn−1, n ≥ 1, n reflects the accepted degree of decision makers
on the membership state. The value of n reflects different fuzziness processing preference.
The bigger (smaller) n is, the higher (lower) the importance of membership is. Too much
bigger or smaller n embodies an extreme preference decision. So the value n should be in
the interval [1, 3].

Note 2: In reality, randomness and fuzziness always occur together in the decision
problems (such as: one factory makes a sales goal “the sales amount is not less than 100
hundred as far as possible”. In this problem, the market demand is a random variable
obeying some probability distribution and the sales goal is a fuzzy event). The fact that
“some quantity indices are not less (more) than the given value b” is the most common
case in multi-objective programming problems. If X denotes the random variable, B
denotes fuzzy events “not less than b as far as possible”, then the probability of B can be
shown as (here, L(λ) is the level effect function; δ is the allowable limit of less than b):

P ({X ∈ B ⊕ L(λ)}) = P ({X ∈ (b − δ, b, b) ⊕ L(λ)}) + P ({X ≥ b}). (9)

It indicates that our discussions are the theoretical foundation for the multi-objective
programming under complex environment.
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Obviously, normal distribution has wide applications in real life. And the EP formulas
are the foundation of EP applications in multi-objective problems. So we can build a new
method to multi-objective programming by combining with the above EP formulas under
the random environment.

4. Multi-Objective Programming Based on EP. Multi-objective programming is a
common problem in complex system optimization and it has the basic form as [13]:

min f(x) = (f1(x), f2(x), · · · , fs(x))

s.t. gi(x) ≤ 0, i = 1, 2, · · · ,m.
(10)

Here, x = {x1, x2, · · · , xn} is the decision variable; fk(x) is the sth decision goal consisting
of decision goal function hk(x) and satisfied value Vk, i.e., fk(x) = {hk(x), V (k)}, k =
1, 2, · · · , s; gi(x) ≤ 0, i = 1, 2, · · · ,m are constraint functions. And we call Equation (10)
a certain multi-objective programming when f1(x), f2(x), · · · , fs(x) and g1(x), g2(x), · · · ,
gm(x) are real functions; we call Equation (10) an uncertain multi-objective programming
when there exist some uncertainties in f1(x), f2(x), · · · , fs(x) or g1(x), g2(x), · · · , gm(x).

Obviously, it is difficult to absolutely satisfy all the goals because the decision goals
and constraint often have some conflict in real problems. So Equation (10) is a formal
model and has no direct solving methods. The core is to convert Equation (10) into a
single goal programming by some strategies.

Multi-objective programming based on priority factors is one of the most common
methods to multi-objective programming problems. It was proposed by Charnes and
Cooper in 1961, to deal with the quantitative multi-objective problems. So Equation (10)
is converted a single goal programming by introducing priority factors of every decision
goals [2]:

min z =
l∑

i=1

Qk

(
w−

k d−
k + w+

k d+
k

)

s.t.



hk(x) + d−
k − d+

k = Vk, k = 1, 2, · · · , s,
n∑

j=1

cjkxj = hk(x), k = 1, 2, · · · , s,

n∑
j=1

aijxj ≤ (=,≥) bi, i = 1, 2, · · · , m,

xj ≥ 0, j = 1, 2, · · · , n,

d−
k , d+

k ≥ 0, k = 1, 2, · · · , s.

(11)

Here, Vk denotes the satisfying goal value of the kth decision goal; d+
k , d−

k denote the
part more than or less than the satisfying goal value (called as the positive and negative
deviation); w−

k , w+
k denote the weight of positive and negative deviation in the same

priority respectively; Qk denotes the priority level of kth decision goal, {q1, q2, · · · , qL}
are all the values of Qk and satisfied that q1 ≫ q2 ≫ · · · ≫ qL (here, a ≫ b shows that a
is much greater than b).

Obviously, priority factors in Equation (11) have two effects: 1) It describes the im-
portance order of decision goals in the decision process; 2) It converts the multi-objective
programming into a single goal linear programming. These effects make Equation (11) a
good calculation formula. However, this model lacks system and universality which show
that: 1) It cannot solve nonlinear problems with uncertainty; 2) The weight of different
dimensional goals are difficult to determine when different type goals have distinctions in
the same degree (or in the same priority level).

However, real multi-objective environment is often random. So Equation (11) can-
not solve the multi-objective programming problems in random environment, effectively.
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However, we can construct the corresponding multi-objective model by expectation model
[14] and Chance-constrained model [15].

And, expectation model [11] can convert a random problem into a concrete model
by representing random uncertain parameters by the expectation values. So the multi-
objective expectation model can be described as model (12) for the multi-objective prob-
lems in random environment [14]:

min E(f(x)) = (E(f1(x)), E(f2(x)), · · · , E(fs(x)))

s.t. E(gi(x)) ≤ 0, i = 1, 2, · · · ,m.
(12)

Here, E(η) denotes the expectation value of random variable η.
Equation (12) converts the random model into a certain model, effectively. So the

certain solving solutions to (10) are also suitable to Equation (12). Although, Equation
(12) makes the random multi-objective programming problem easy to solve results, it
also embodies two shortcomings: 1) the quality of decision results cannot be guaranteed
when the randomness is big; 2) Equation (12) cannot effectively solve the decision making
problems in different risks. For these two shortcomings, Charnes and Cooper proposed
the chance-constrained model for the random problems in 1959 [15]. And multi-objective
chance-constrained model was presented in combination with chance-constrained model
[15]:

min
(
f1, f 2, · · · , f s

)
s.t.

{
P

(
hk(x) ≤ hk

)
≥ βk, k = 1, 2, · · · , s,

P (gi(x) ≤ 0) ≥ α, i = 1, 2 · · · , m.

(13)

Here, P (A) denotes the probability of event A, βk is the satisfied threshold of kth decision
goal, α denotes the satisfied threshold of gi(x) ≤ 0, fk denotes the decision goal consisting
of objective function hk and satisfied value V (k), i.e., fk =

{
hk, V (k)

}
, k = 1, 2, · · · , s.

Equation (13) can effectively solve the multi-objective problems in different risks even
the randomness is big. However, this model is complex when there are many decision
goals. The decision makers have to make suitable probability values α and βk for every
decision goal.

Obviously, Equation (12) and Equation (13) cam solve random multi-objective pro-
gramming problems. However, both of them have some shortcomings. Simultaneously,
real decision environment is often random rather than certain and the decision goal val-
ues are fuzzy rather than the certain values. So the existing methods to multi-objective
programming are lack of systematic processing mechanism. And for the multi-objective
problems with both fuzziness and randomness, the reliability of decision results is the key
that we must consider in the decision process. So, for the multi-objective programming
model (10) in random environment, we can regard the satisfied goal fk(x) as the fuzzy
event and regard the level effect function L(λ) as the treatment measures to fuzziness when
the satisfied values Vk are fuzzy. Then we can represent P ({hk(x) ∈ Vk} ⊕ L(λ)) , pk(x)
as the case of achieving the kth decision goal; further Equation (10) can be converted into
the multi-objective programming based on EP as the following:

min p̃(x) = (p̃1(x), p̃2(x), · · · , p̃s(x))

s.t.

{
pk(x) = P ({hk(x) ∈ Vk} ⊕ L(λ)), k = 1, 2, · · · , s,

gi(x) ≤ 0, i = 1, 2, · · · ,m.

(14)

Here, gi(x), i = 1, 2, · · · ,m are the real functions; p̃k(x) denotes the decision goal with
decision function pk(x) satisfying value 1 (that is p̃k(x) = {pk(x), 1}, k = 1, 2, · · · , s). If
gi(x), i = 1, 2, · · · ,m are random, we can convert them into the quantitative constraint
combining with expectation model [14], Chance-constrained model [15] and Quasi-linear
stochastic programming model [16].
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It is easy to see that P ({hk(x) ∈ Vk} ⊕ L(λ)) , pk(x) is a dimensionless pattern
of decision goal fk(x). It is easy to establish the solving methods by combining with
different theory methods, such as, if w1, w2, · · · , ws are the weights of the decision goals
f1(x), f2(x), · · · , fs(x), there exists:

max p(x) =
s∑

k=1

wkpk(x)

s.t.

{
pk(x) = P ({hk(x) ∈ Vk} ⊕ L(λ)), k = 1, 2, · · · , s,

gi(x) ≤ 0, i = 1, 2, · · · ,m.

(15)

Here Equation (15) is a concrete decision model by making the comprehensive probability
maximum of all the decision goals.

Due to the fact that “not more (or less) than b as far as possible” is the most common
form in the multi-objective problems and δ is the greatest degree more (or less) than the
quantitative, we can represent these events as (−∞, b)∪(b, b, b+δ) (or (b−δ, b, b)∪[b, +∞)).
So P ({X ∈ (a, b, c)}⊕L(λ)) is the most common EP calculation form and we will discuss
the application of this model in the next part.

5. The Application of EP in Multi-Objective Programming. In this section, we
will discuss the practicability and effectiveness of Equation (14) and compare it with
Equation (11) through a case.

Case description: Some company successfully developed two new products A and B
by adding materials C and D. And every ton A and B need to add C 2 kg/t and 1 kg/t,
D 1 kg/t and 3 kg/t, respectively. The profits of A and B are variables ξ1, ξ2 obeying
normal distribution N(800, 202) and N(1000, 352), respectively. This company decides to
produce these two new products in a workshop and have a deep research on the equipment
product time. Then getting the equipment time for A and B are variables η1, η2 obeying
normal distribution N(5, 1) and N(8, 2) because of the operating conditions. In the next
production cycle, there are C and D 60 kg respectively. The best equipment time is 200
hours. And 20 hours is the maximum over or short for the best equipment time. The
company wants to recieve total profits more than 30000 yuan as far as possible. If short,
28000 yuan is the minimum total profits. How to arrange the production of A and B is
suitable?

Obviously, the problem is a multi-objective problem with two decision goals. Sup-
posing x1, x2 are the number of A and B, f1(x1, x2), f2(x1, x2) are the decision goals
and h1(x1, x2), h2(x1, x2) are the decision goal functions. Then there exists the following
model:

min f(x1, x2) = (f1(x1, x2), f2(x1, x2))

s.t.



f1(x1, x2) = {h1(x1, x2), 30000},
f2(x1, x2) = {h2(x1, x2), 200},
h1(x1, x2) = ξ1x1 + ξ2x2,

h2(x1, x2) = η1x1 + η2x2,

2x1 + x2 ≤ 60,

x1 + 3x2 ≤ 60,

x1, x2 ≥ 0.

(16)

Obviously, this is a multi-objective problem with random environment and fuzzy deci-
sion goals. So we can solve it by two methods.
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Method 1: Multi-objective programming based on priority factors. Obvi-
ously, Equation (14) is a random programming problem. We can convert it to a quanti-
tative decision problem by Equation (12):

min f(x1, x2) = (f1(x1, x2), f2(x1, x2))

s.t.



f1(x1, x2) = {h1(x1, x2), 30000},
f2(x1, x2) = {h2(x1, x2), 200},
800x1 + 1000x2 = h1(x1, x2),

5x1 + 8x2 = h2(x1, x2),

2x1 + x2 ≤ 60,

x1 + 3x2 ≤ 60,

x1, x2 ≥ 0.

(17)

Obviously, Equation (17) is a certain multi-objective programming model. So, we can
further establish the following model in combination with Equation (11) and decision
goals:

min z = Q(1)d−
1 + Q(2)

(
d+

2 + d−
2

)

s.t.



h1(x1, x2) + d−
1 − d+

1 = 30000,

h2(x1, x2) + d−
2 − d+

2 = 200,

800x1 + 1000x2 = h1(x1, x2),

5x1 + 8x2 = h2(x1, x2),

2x1 + x2 ≤ 60,

x1 + 3x2 ≤ 60,

x1, x2 ≥ 0.

(18)

We can apply the simplex method to (18) and the results are shown as Table 1.

Table 1. The results of (18)

Coefficients x1 x2 d−
1 d−

2 d+
2

Q(1) ≪ Q(2) 25 10 0 0 6
Q(1) ≫ Q(2) 25.4545 9.0909 545.4545 0 0

The results show that we only can get a satisfied solution not an optimal solution
satisfying both the decision goals simultaneously. And we still cannot get the probability
of this satisfied solution. However, the probability of random problem is an important
indicator in real decision process. We should get the probability of satisfied solution and
make an appropriate decision.

Method 2: Multi-objective programming model based on EP. According to
Section 4, we can regard two decisions as two fuzzy events and denote them by fuzzy
number V1 = (28000, 30000, 30000)∪ (30000, +∞) and V2 = (180, 200, 220). Then we can
establish the following model for this problem according to Equation (14):

min p̃(x1, x2) = (p̃1(x1, x2), p̃2(x1, x2))

s.t.



pk(x1, x2) = P ({hk(x1, x2) ∈ Vk} ⊕ L(λ)), k = 1, 2,

h1(x1, x2) = ξ1x1 + ξ2x2,

h2(x1, x2) = η1x1 + η2x2,

2x1 + x2 ≤ 60,

x1 + 3x2 ≤ 60,

x1, x2 ≥ 0.

(19)
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By ξ1 ∼ N (800, 202), ξ2 ∼ N (1000, 352), η1 ∼ N(5, 1) and η2 ∼ N(8, 2), we know
h1(x1, x2) ∼ N (800x1 + 1000x2, 202x2

1 + 352x2
2) and h2(x1, x2) ∼ N (5x1 + 8x2, x

2
1 + 2x2

2).
If w1, w2 > 0 as the weights of the decision goals, then we can convert (19) into a concrete
model through Equation (15):

max p(x1, x2) = w1p1(x1, x2) + w2p2(x1, x2)

s.t.



p1(x1, x2) = P ({h1(x1, x2) ∈ V1} ⊕ L(λ)),

p2(x1, x2) = P ({h2(x1, x2) ∈ V2} ⊕ L(λ)),

h1(x1, x2) = ξ1x1 + ξ2x2,

h2(x1, x2) = η1x1 + η2x2,

2x1 + x2 ≤ 60,

x1 + 3x2 ≤ 60,

x1, x2 ≥ 0.

(20)

The company further invites experts repeatedly on the decision consciousness of decis-
ion-makers and get the level effect function is L(λ) = nλn−1, n ≥ 1. We can get the results
shown as Table 2 under different coefficients by genetic algorithm (The parameters setting
is stated as follows: the coding length is 20; the size of population is 80; the maximum
generation is 100; the crossover probability is 1 and the mutation probability is 0.001.).

Table 2. The results of Equation (18)

Coefficients x1 x2 The comprehensive probability

n = 1

w1 = 0.9, w2 = 0.1 23.9883 11.9941 0.93
w1 = 0.7, w2 = 0.3 23.7439 12.0821 0.7970
w1 = 0.5, w2 = 0.5 23.5239 12.1554 0.6650
w1 = 0.3, w2 = 0.7 23.5239 12.1408 0.5345
w1 = 0.1, w2 = 0.9 22.8886 12.3607 0.4059

n = 2

w1 = 0.9, w2 = 0.1 23.7439 12.0821 0.9233
w1 = 0.7, w2 = 0.3 23.9638 12.0088 0.7938
w1 = 0.5, w2 = 0.5 23.6217 12.1261 0.6563
w1 = 0.3, w2 = 0.7 23.9638 12.0088 0.5284
w1 = 0.1, w2 = 0.9 22.6950 12.0968 0.3922

Obviously, this model achieves the coordination between the goals by maximizing the
probability of each decision goal. It is a general multi-objective programming model. By
comparing Method 1 and Method 2, we can get the following conclusions: 1) fuzziness
essentially affects the decision result in the decision making process; 2) Equation (11)
cannot embody the probability of results and it is only suitable for the quantitative
multi-objective problems; 3) Equation (14) can effectively deal with the fuzziness and
randomness simultaneously; 4) Equation (14) is a dimensionless model, so it can eliminate
the dimension influence by converting the dimensional goal into the probability issue; 5)
the results of Equation (14) can reflect the comprehensive probability, which can be the
decision foundation; 6) the importance of decision goals also affect the decision results
even the same result may lead to different probability in different decision importance
among goals.

6. Conclusions. Multi-objective decision problems are common in complex system op-
timization, management decision and many other fields. In real multi-objective decision
problems, fuzziness and randomness often coexist. In this paper, for the multi-objective
problems with fuzzy goals and random coefficients, we establish a multi-objective model
based on EP by regarding the fuzzy goals as fuzzy events. And several effect proba-
bilities for special fuzzy events are further given with normal distribution. Finally, we
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compare the model with the other methods through a case. Theory analysis and experi-
ment show that our method based on EP not only has good structure characteristics and
interpretability, but also can merge fuzzy preference into the decision-making process.
Although we discuss the multi-objective programming with random goal functions, it is
more common that the constraints have randomness. We will discuss the multi-objective
programming with fuzzy goals and random constraints in the next direction.
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