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Abstract. This paper studies the problem of adaptive neural tracking control for per-
manent magnet synchronous motors (PMSM) stochastic nonlinear systems. Neural net-
works are used to approximate the nonlinearities, and adaptive backstepping technique
is employed to construct controller. The proposed controller ensures that all signals of
the closed loop system remain bounded in probability, and the tracking error converges to
an arbitrarily small neighborhood around the origin. Simulation results demonstrate the
effectiveness of the proposed approach.
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1. Introduction. For many industrial systems, their dynamic models can be described
by a set of stochastic differential equations. Recently, with stochastic stability theory [1],
lots of results for deterministic system are extended to stochastic systems [2]. Although
some basic results of Ito stochastic differential equation and its stability theory [3,4] have
already existed, there are only few researches on PMSM stochastic nonlinear systems via
neural control approach.

In recent years, the study of electric vehicle drive has been a popular research field. It is
necessary that motor drive systems applied in electric vehicle have a high starting torque
and wide operating range from standstill to high speed running. PMSM have become
more and more attractive for high performance electric vehicle applications because of
its high power density, high reliability, high power factor, large torque to inertia ratio
and long life over other kinds of motors [5]. Many scholars have proposed some tracking
control strategies for PMSM without stochastic disturbance. For example, Baik et al. [6]
proposed sliding mode control technique for nonlinear speed control of PMSM, Wang et
al. [7] solved chaos synchronization of PMSM with disturbance by using fuzzy adaptive
logic, and Cao and Fan [8] studied vector controlled PMSM based on neural network.
During the actual running process, stochastic noise is usually unavoidable for PMSM
systems due to motor structure and control circuit. So far, there has been no one that
reported on how to handle PMSM position control systems with stochastic disturbance.

In this paper, we propose an adaptive neural control scheme for stochastic PMSM
systems via backstepping method. In the control design procedure, radial basis function
(RBF) neural networks are applied to approximating unknown nonlinear functions, and
then adaptive neural network and backstepping technique are combined to construct the
desired controller. The proposed controller can guarantee that all the signals in the closed
loop system are bounded and the tracking error converges to a small neighborhood of the
origin. The simulation results illustrate the effectiveness of the proposed control scheme.
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2. Problem Statement and Preliminaries. The dynamic model of PMSM stochastic
system under d-q coordinate axis is expressed as follows [9]:

dθ = ωdt

dω = 1
J

(
3
2
np [Φiq + (Ld − Lq) idiq] −Bω − TL

)
dt+ ψT

1 dw

diq = 1
Lq

(−Rsiq − npωLdid − npωΦ + uq) dt+ ψT
2 dw

did = 1
Ld

(−Rsid + npωLqiq + ud) dt+ ψT
3 dw

w denotes r-dimensional standard Brownian motion. ud and uq are d-q axis voltages,
id and iq stand for d-q axis currents. ω and θ denote rotor angular velocity and rotor
position. J , np and B denote inertia, pole pairs and friction factor. Ld and Lq are the
d-q axis inductance. Rs, TL and Φ are stator resistance, load torque and flux linkage,
respectively. For simplicity, introduce the following notations: x1 = θ, x2 = ω, x3 = iq,

x4 = id, a1 = 3npΦ

2
, a2 = 3np(Ld−Lq)

2
, b1 = −Rs

Lq
, b2 = −npLd

Lq
, b3 = −npΦ

Lq
, b4 = 1

Lq
, c1 = −Rs

Ld
,

c2 = npLq

Ld
, c3 = 1

Ld
. Then, the PMSM stochastic system can be described in the following

form: 
dx1 = x2dt

dx2 =
(

a1

J
x3 + a2

J
x3x4 − B

J
x2 − TL

J

)
dt+ ψT

1 dw

dx3 = (b1x3 + b2x2x4 + b3x2 + b4uq) dt+ ψT
2 dw

dx4 = (c1x4 + c2x2x3 + c3ud) dt+ ψT
3 dw

(1)

For stochastic control system dx = f (x) dt + h (x) dw, where f (·) and h (·) are locally
Lipchitz functions, the following concepts are proposed.

Definition 2.1. For any given V (x), define the differential operator L as follows:

LV =
∂V

∂x
f +

1

2
Tr

{
hT ∂

2V

∂x2
h

}
(2)

Assumption 2.1. The sign of gi which is defined as the coefficient of xi does not change,
so there exist constants bm and bM such that for 1 ≤ i ≤ 4: 0 < bm ≤ gi ≤ bM <∞.

In this paper, RBF neural networks will be used to approximate continuous func-
tion, which are used as the form f (Z) = W TS (Z), with Z ∈ ΩZ being input vector,

W = [w1, w2, . . . , wl]
T is weight vector, l > 1 is neural networks node number, and

S (Z) = [s1 (Z) , s2 (Z) , . . . , sl (Z)]T means basis function vector with si (Z) being used

as Gaussian function as follows: si (Z) = exp
[
− (Z−µi)

T (Z−µi)

η2
i

]
, i = 1, 2, . . . , l, where

µi = [µi1, µi2, . . . , µiq]
T is the center of the receptive field, and ηi is the width of Gaussian

function. In [10], it has been shown that for f (Z) over a compact set ΩZ with sufficiently
large l, for any ε > 0, there exists an RBF neural network W TS(Z) such as:

f (Z) = W TS (Z) + δ (Z) , ∀Z ∈ Ωz (3)

where W is ideal weight vector, and δ (Z) is approximation error and satisfies |δ (Z)| ≤ ε.

3. Adaptive Neural Control via Backstepping. In this section, a backstepping based
control design procedure will be developed by the following coordinate transformation:

zi = xi − αi−1, i = 1, . . . , 4 (4)

with α0 = xd, and α3 = 0. The unknown constant θi is specified as:

θi =
1

bm
∥Wi∥2 ; i = 1, 2 (5)
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The adaptive laws will be constructed as the following form:

˙̂
θi =

ri

2λ2
i

z6
i+2S

T
i (Zi)Si (Zi) −miθ̂i (6)

where θ̂i is estimation of θi, and λi, mi and ri are positive design parameters for i = 1, 2.
Step 1: According to the coordinate transformation (4), it follows from the first dif-

ferential equation of system (1) that:

dz1 = (x2 − ẋd) dt (7)

Then we choose a Lyapunov function candidate as follows:

V1 =
1

4
z4
1 (8)

By Equations (7) and (8), we can get V̇1 = z3
1 (z2 + α1 − ẋd), where z2 = x2−α1. Accord-

ing to Young’s inequality, one has z3
1z2 ≤ 3

4
z4
1 + 1

4
z4
2 . Consequently, with v1 = k1 − 3

4
> 0,

it can be verified by choosing α1 = −k1z1 + ẋd that:

V̇1 ≤ −v1z
4
1 +

1

4
z4
2 (9)

Step 2: Similar to Step 1, we can obtain:

dz2 =

(
a1

J
x3 +

a2

J
x3x4 −

B

J
x2 −

TL

J
− α̇1

)
dt+ ψT

1 dw (10)

Also, choose the Lyapunov function candidate as: V2 = V1 + 1
4
z4
2 .

By Equations (2) and (10), we have:

LV2 = V̇1 + z3
2

((a1

J
+
a2

J
x4

)
x3 −

B

J
x2 −

TL

J
− α̇1

)
+

3

2
z2
2ψ

T
1 ψ1 (11)

According to Young’s inequality, the inequality 3
2
z2
2ψ

T
1 ψ1 ≤ 3

4
l−2
1 z4

2 ∥ψ1∥4+ 3
4
l21 holds, where

l1 is a designed positive constant. Substituting (9) into (11) gives:

LV2 ≤ −v1z
4
1+z3

2

((a1

J
+
a2

J
x4

)
(z3 + α2) +

1

4
z2 +

3

4
l−2
1 z2 ∥ψ1∥4 − B

J
x2 −

TL

J
− α̇1

)
+

3

4
l21

where z3 = x3 − α2. By using Young’s inequality again, it is obtained that:(a1

J
+
a2

J
x4

)
z3
2z3 ≤

3

4

(a1

J
+
a2

J
x4

)
z4
2 +

1

4

(a1

J
+
a2

J
x4

)
z4
3

Choose α2 = 1

(a1
J

+
a2
J

x4)

(
−k2z2 − 1

4
z2 − 3

4
l−2
1 z2 ∥ψ1∥4 + B

J
x2 + TL

J
+ α̇1

)
, and we can easily

get:

LV2 ≤ −v1z
4
1 − v2z

4
2 +

1

4

(a1

J
+
a2

J
x4

)
z4
3 +

3

4
l21 (12)

with v2 = k2 − 3
4

(
a1

J
+ a2

J
x4

)
> 0.

Step 3: By (2) and (4), the following equation is obtained easily:

dz3 = (b1x3 + b2x2x4 + b3x2 + b4uq − Lα2) dt+

(
ψ2 −

∂α2

∂x2

ψ1

)T

dw (13)

where

Lα2 =
2∑

i=1

∂α2

∂xi

ẋi +
2∑

i=0

∂α2

∂x
(i)
d

x
(i+1)
d +

∂α2

∂θ̂1

˙̂
θ1 +

1

2

2∑
p,q=1

∂2α2

∂xp∂xq

ψT
p ψq (14)
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Choose stochastic Lyapunov function candidate as V3 = V2 + 1
4
z4
3 + bm

2r1
θ̃2
1. By Equations

(2) and (13), one has

LV3 = LV2 + z3
3 (b1x3 + b2x2x4 + b3x2 + b4uq − Lα2)

+3
2
z2
3

(
ψ2 − ∂α2

∂x2
ψ1

)T (
ψ2 − ∂α2

∂x2
ψ1

)
− bm

r1
θ̃1

˙̂
θ1

(15)

Note that 3
2
z2
3

(
ψ2 − ∂α2

∂x2
ψ1

)T (
ψ2 − ∂α2

∂x2
ψ1

)
≤ 3

4
l−2
2 z4

3

∥∥∥ψ2 − ∂α2

∂x2
ψ1

∥∥∥4

+ 3
4
l22 with l2 > 0

being a designed constant. Then, using the above inequality and substituting (12) and
(14) into (15) shows:

LV3 ≤ −v1z
4
1 − v2z

4
2 +

3

4

2∑
i=1

l2i + z3
3

(
b4uq + f̄1 (Z1)

)
− 3

4
z4
3 −

bm
r1
θ̃1

˙̂
θ1 (16)

where f̄1(Z1) = 1
4

(
a1

J
+ a2

J
x4

)
z3 + b1x3 + b2x2x4 +b3x2−

2∑
i=1

∂α2

∂xi
ẋi−

2∑
i=0

∂α2

∂x
(i)
d

x
(i+1)
d − ∂α2

∂θ̂1

˙̂
θ1−

1
2

2∑
p,q=1

∂2α2

∂xp∂xq
ψT

p ψq + 3
4
l−2
2 z3

∥∥∥(
ψ2 − ∂α2

∂x2
ψ1

)∥∥∥4

+ 3
4
z3. According to (3), there exists a neural

network such that f̄1 (Z1) = W T
1 S1 (Z1) + δ1 (Z1) with |δ1 (Z1)| ≤ ε1. Furthermore, it

follows from Young’s inequality and (5) that:

z3
3 f̄1 (Z1) ≤

bm
2λ2

1

z6
3θ1S

T
1 S1 +

1

2
λ2

1 +
3

4
z4
3 +

1

4
ε4
1 (17)

Substituting (17) into (16) gives:

LV3 ≤ −v1z
4
1 − v2z

4
2 +

3

4

2∑
j=1

l2j + z3
3b4uq +

bm
2λ2

1

z6
3θ1S

T
1 S1 +

1

2
λ2

1 +
1

4
ε4
1 −

bm
r1
θ̃1

˙̂
θ1 (18)

The control input uq can be chosen as uq = −k3z3 − 1
2λ2

1
z3
3 θ̂1S

T
1 S1. Further using (6), (18)

can be expressed as LV3 ≤ −
3∑

i=1

viz
4
i + 1

2
λ2

1 + 3
4

2∑
i=1

l2i + 1
4
ε4
1 + bmm1

r1
θ̃1θ̂1 with v3 = k3b4 > 0.

Step 4: By Equation (4), one has:

dz4 = (c1x4 + c2x2x3 + c3ud) dt+ ψT
3 dw (19)

Choose stochastic Lyapunov function candidate as V4 = V3 + 1
4
z4
4 + bm

2r2
θ̃2
2. By Equations

(2) and (19), the following equation can be obtained:

LV4 = LV3 + z3
4(c1x4 + c2x2x3 + c3ud) +

3

2
z2
4ψ

T
3 ψ3 −

bm
r2
θ̃2

˙̂
θ2

Then, by repeating the same line in Step 3, the following inequality can be verified:

LV4 ≤ −
3∑

i=1

viz
4
i +

1

2
λ2

1 +
3

4

3∑
i=1

l2i +
1

4
ε4
1 +

bmm1

r1
θ̃1θ̂1 + z3

4

(
c3ud + f̄2 (Z2)

)
− 3

4
z4
4 −

bm
r2
θ̃2

˙̂
θ2

(20)
where f̄2 (Z2) = c1x4 + c2x2x3 + 3

4
l−2
3 z4 ∥ψ3∥4 + 3

4
z4. Similarly, one has:

z3
4 f̄2 (Z2) ≤

bm
2λ2

2

z6
4θ2S

T
2 S2 +

1

2
λ2

2 +
3

4
z4
4 +

1

4
ε4
2

The control input ud can be chosen as ud = −k4z4− 1
2λ2

2
z3
4 θ̂2S

T
2 S2. Then, with v4 = k4c3 >

0, the inequality (20) can be expressed as:

LV4 ≤ −
4∑

i=1

viz
4
i +

1

2

2∑
i=1

λ2
i +

3

4

3∑
i=1

l2i +
1

4

2∑
i=1

ε4
i +

2∑
i=1

bmmi

ri

θ̃iθ̂i (21)
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4. Stability Analysis. For stability analysis of the closed-loop system, we choose Lya-
punov function as V = V4. For the term mibm

ri
θ̃iθ̂i, the following inequality is obvious:

−mibm
ri

θ̃2
i +

mibm
ri

θ̃iθi ≤ −mibm
2ri

θ̃2
i +

mibm
2ri

θ2
i (22)

Furthermore, substituting (22) into (21), we have:

LV ≤ −
4∑

i=1

viz
4
i +

1

2

2∑
i=1

λ2
i +

3

4

3∑
i=1

l2i +
1

4

2∑
i=1

ε4
i +

2∑
i=1

(
−bmmi

2ri

θ̃2
i +

bmmi

2ri

θ2
i

)
(23)

Let a0 = min {4v1, 4v2, 4v3, 4v4,m1,m2} and b0 = 1
2

2∑
i=1

λ2
i + 3

4

3∑
i=1

l2i + 1
4

2∑
i=1

ε4
i +

2∑
i=1

bmmi

2ri
θ2

i ,

(23) can be rewritten as the following form:

LV ≤ −a0V + b0, t ≥ 0 (24)

Therefore, zi and θ̃i are bounded in probability. αi is also bounded in probability because
∥Si∥ ≤ s. Consequently, all the signals in the closed loop system remain bounded in the
sense of probability. Furthermore, (24) and [3] (Th. 4.1) imply that:

dE [V (t)]

dt
≤ −a0E [V (t)] + b0

Thus, to guarantee that the tracking error converges to a small neighborhood around the
origin, we can properly adjust the parameters a0 and b0.

5. Simulation Example. In order to illustrate the effectiveness of the proposed ap-
proach, the simulation is run for PMSM with parameters as follows: J = 0.003798,
B = 0.001158, a1 = 0.56025, a2 = −0.00135, b1 = −215.873, b2 = −2.714, b3 = −118.571,
b4 = 317.460, c1 = −238.596, c2 = 3.316, c3 = 350.877, ψ1 = 0.25, ψ2 = 0.15 cos x2,
ψ3 = 0.15 sin x3.

The simulation is carried out under zero initial condition for PMSM. Reference signal

is taken as xd = sin(t) and load torque TL =

{
1.5, 0 ≤ t ≤ 5,
2, t > 5

. Neural networks

W T
1 S1(Z1) and W T

2 S2(Z2) contain eleven nodes with centers spaced evenly in the interval
[−5, 5]. The following control parameters are chosen:

k1 = 4, k2 = 10, k3 = 14, k4 = 10, r1 = r2 = 2.5, λ1 = λ2 = 2, m1 = 0.5, m2 = 0.005.

The simulation results are shown by Figures 1 and 2. Figure 1 displays system output
and reference signal, and Figure 2 shows trajectories of input signals. From Figures 1
and 2, it is seen clearly that the proposed controller can track reference signal well and
controller is bounded.

Figure 1. x1 (solid line), xd

(dotted line)
Figure 2. uq (solid line), ud

(dotted line)
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6. Conclusions. This paper studies adaptive neural networks backstepping position
tracking control method for PMSM stochastic nonlinear systems. The proposed controller
can guarantee that all signals of the closed loop system are bounded and the tracking er-
ror converges to an arbitrarily small neighborhood of the origin. The simulation results
illustrate the effectiveness of the proposed control scheme. It should be pointed out that
the work in this paper does not consider the problem of input saturation. So how to
control a nonlinear system with input saturation is our future research direction.
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[1] H. Deng, M. Krstić and R. J. Williams, Stabilization of stochastic nonlinear systems driven by noise
of unknown covariance, IEEE Trans. Automatic Control, vol.46, no.8, pp.1237-1253, 2001.

[2] S. J. Liu, J. F. Zhang and Z. P. Jiang, Decentralized adaptive output-feedback stabilization for
large-scale stochastic nonlinear systems, Automatica, vol.43, no.2, pp.238-251, 2007.

[3] R. Khasminskii, Stochastic Stability of Differential Equations, Springer Science & Business Media,
2011.

[4] C. Li, L. Chen and K. Aihara, Stochastic stability of genetic networks with disturbance attenuation,
IEEE Trans. Circuits and Systems II: Express Briefs, vol.54, no.10, pp.892-896, 2007.

[5] Z. Q. Zhu and D. Howe, Electrical machines and drives for electric, hybrid, and fuel cell vehicles,
Proc. of the IEEE, vol.95, no.4, pp.746-765, 2007.

[6] I. C. Baik, K. H. Kim and M. J. Youn, Robust nonlinear speed control of PM synchronous motor using
boundary layer integral sliding mode control technique, IEEE Trans. Control Systems Technology,
vol.8, no.1, pp.47-54, 2000.

[7] L. Wang, Y. Li, X. Zhu and J. Zhang, Chaos synchronization of permanent magnet synchronous
motor with disturbance using fuzzy adaptive logic, Power System Protection and Control, vol.39,
no.11, pp.33-37, 2011.

[8] X. Cao and L. Fan, Vector controlled permanent magnet synchronous motor drive based on neu-
ral network and multi fuzzy controllers, The 5th International Conference on Fuzzy Systems and
Knowledge Discovery, vol.3, pp.254-258, 2008.

[9] J. Yu, J. Gao, Y. Ma and H. Yu, Adaptive fuzzy tracking control for a permanent magnet synchronous
motor via backstepping approach, Mathematical Problems in Engineering, 2010.

[10] M. Karabacak and H. I. Eskikurt, Design, modelling and simulation of a new nonlinear and full adap-
tive backstepping speed tracking controller for uncertain PMSM, Applied Mathematical Modelling,
vol.36, no.11, pp.5199-5213, 2012.


