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Abstract. Consensus-building is an important matter in real world and social science.
For consensus-decision making, Shapley value can assign total profit or risk if their data
of characteristic function can be observed accurately. However, we often face ambigu-
ous case such that we can grasp data only without accuracy in real world. In this paper
we proposed fuzzy Shapley value derived by solving linear programming and discussed its
possibility of equivalent and necessity of inclusion.
Keywords: Decision making, Shapley value, Fuzziness, Possibility of equivalent, Neces-
sity of inclusion, Linear programming

1. Introduction. For cooperative decision making, it is important to search for equi-
librium solution that can explain the final imputation. Decision makers in an effective
consensus process should strive to reach the best possible decision for the group and of all
its members, rather than competing for personal preferences, i.e., agreement seeking. In
transferable utility game, assignment of total profit or risk that occurs after cooperation
is a difficult problem. It is known that the Shapley value gives one rational solution for
the problem [1,2].

This paper deals with strategic decision making problems. We first introduce a pre-
vious related study that is a linear solvable model of Shapley value for decision-making
game [3]. As a method for checking rational weights, the model has advantages such that
computation becomes easy by using solver even if target case is a large scale problem. The
innovation of this research is that we show a natural extension to consider ambiguities by
deriving fuzzy Shapley value.

For the main goal of this research, the paper is organized as follows. Section 2 briefly
describes the outline of Shapley value based on the transferable utility game. Then we
describe the Shapley value obtained by a linear programming problem based on least-
squares error minimization. This leads to us expansion considering fuzziness to Shapley
value in Section 3. Also the possibility of equivalent for fuzzy Shapley value and the
necessity of inclusion of fuzzy Shapley value will be discussed. The practical application
to prove the main result is shown in Section 4. Finally, the paper concludes in Section 5.
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2. Least Square Value in Transferable Utility Game.

2.1. Shapley value. An n-person game in characteristic function form or transferable
utility game is a pair (K, v) where K = {1, 2, 3, · · · , k} where k = |K| means the number
of members of set K and v is a function such that v(ø) = 0. In case of S ∩ T = ø, then
the condition like v(S ∪ T ) ≥ v(S) + v(T ) is called superadditivity.

In transferable utility game (K, v), the evaluation of benefit for player d can be repre-
sented by zd(K, v) and the set z(K, v) is called a payoff vector. The condition of linearity
is as follows

z (K, v + v′) = z(K, v) + z(K, v′) (1)

In case of the game satisfying

v(S ∪ d) = v (S ∪ d′) , (∀S ∈ K − {d, d′}) (2)

and z(K, v) keeps the following equation

zd(K, v) = zd′(K, v), (d, d′ = 1, 2, 3, · · · , k and d ̸= d′) (3)

then it is assumed to have the equal treatment property.
An imputation of the game (K, v) is a vector z(K, v)=(z1(K, v), z2(K, v), z3(K, v), · · · ,

zk(K, v)) which satisfies the following individual and grand coalition rationalities:

• Individual rationality: zd(K, v) ≥ v(d), (d = 1, 2, 3, · · · , k).
• Grand coalition rationality:

∑
d∈K zd(K, v) = v(K).

Such coalition zd(K, v) can be obtained by the Shapley value of game (K, v).

ϕd(K, v) =
∑

S\d∈S⊂K

(s − 1)!(k − s)!

k!
{v(S) − v(S\d)} (4)

where s = |S| is the number of members of coalition set S. ϕd(K, v) is the mathematical
expectation of the marginal contribution of player d when all orders of formation of the
grand coalition are equi-probable [1].

2.2. Shapley value by least-squares error minimization. Now we consider the set
of weight Mr,s, (r = 2, 3, 4, · · · , k; s = 1, 2, 3, · · · , r − 1) which takes non negative value
and has at least one positive value for each k, and consider the following problem,

Minimize
∑

S⊂K, S ̸=K

Mr,s

(
v(S) −

∑
d∈S

zd(K, v)

)2

(5)

Subject to
k∑

d=1

zd(K, v) = v(K)

The solution can be given by Ruiz et al. [4] as follows,

z∗d(K, v) =
1

k

{
v(K) +

∑
r∈K

(cdr − crd′)

}
(6)

where cdd′ is derived by Namekata [5] and

cdd′ =
∑

S∈Γ(d+, d′−)

Mr,sv(S) (7)

and Γ(d+, d′−) = {S ⊂ K| d ∈ S, d′ ̸∈ S}. In order that the set of weight satisfies∑
S∈Γ(d+, d′−)

Mr,s =
r−1∑
s=1

Mr,s

∑
S∈Γ(d+, d′−), s=|S|

1 =
r−1∑
s=1

Mr,s{r−2Cs−1} = 1 (8)
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We can determine the following weight as one of them

Mr,s =
1

r − 1
{r−2Cs−1}−1 (9)

In this case the solution of the objective function can be shown that it is equivalent to
Shapley value

z∗d(K, v) = ϕd(K, v) (10)

2.3. Shapley value defined by linear problem. We propose the linear solvable for-
mation to obtain allocation based on the least square value in transferable utility game.
The solution of weighted least squared error, if it satisfies the constraint condition, can
be given by the following inner product form,

ATMAz = ATMv (11)

where, for example of case K = {φ1, φ2, φ3, · · · , φk} and q =
∑k−1

j=1 kCj then

z =


zφ1(K, v)
zφ2(K, v)
zφ3(K, v)

...
zφk

(K, v)

 ∈ ℜk ×ℜ1, v =



v(φ1)
v(φ2)

...
v(φk)

v(φ1, φ2)
v(φ1, φ3)

...
v(φ1, φk)

...
v(φk−1, φk)

...
v(φ1, φ2, · · · , φk−1)

...
v(φ2, φ3, · · · , φk)



∈ ℜq ×ℜ1 (12)

and

M =



Mk,1 0 0 0 0 0 0
0 Mk,1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Mk,1 0 0 0
0 0 0 0 Mk,2 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 Mk,k−1


∈ ℜq ×ℜq, (13)

AT =


1 0 0 0 0 1 1 1 1 · · · 0
0 1 0 0 0 1 0 0 0 · · · 1
0 0 1 0 0 0 1 0 0 · · · 1

0 0 0
. . . 0

... · · · . . .
... · · · ...

0 0 0 0 1 0 0 0 1 · · · 1

 ∈ ℜk ×ℜq (14)

Taking a sample set d from the data, v and z as the value of referred sample the error
obtained is the expression in

ed = fd(A,B,v) =
(
BTv − CTz

)
d

(15)
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where BT = ATM ∈ ℜk × ℜq, CT = ATB ∈ ℜk × ℜk and ( )d denotes selection of the
d-th row value, thus the sum of all error functions ϵ =

∑
d |ed| using the multiple linear

regression model that minimize the sum of the absolute values of the residuals.
Linear solvable formulation to obtain Shapley value [3] is defined by

Minimize ϵ (16)

Subject to cT
d z + s+

d − s−d = bT
d v, (d = 1, 2, 3, · · · , k)

k∑
d=1

zd(K, v) = v(K)

zd ≥ 0, s+
d ≤ ϵ, s−d ≤ ϵ, (d = 1, 2, 3, · · · , k)

3. Derivation of Fuzzy Shapley Value.

3.1. Definition of fuzzy Shapley value. We introduce fuzzy Shapley value Zd =
(zd, ζd)L where its center is zd and width is ζd and ( )L denotes the triangle type, i.e.,
L-L type, fuzzy membership function µZd

(yd) represented by L(x) which satisfies

L(x) = L(−x),

L(0) = 1,

L(x) is non-increasing function in x ∈ [0,∞).

For example, in case of L(x) = max(0, 1 − |x|) then the fuzzy membership function is

defined by µZd
(yd) = L

(
zd−yd

ζd

)
.

Moreover, the characteristic function is also assumed to be generated by fuzzy value
V (S) = (v(S), πS)L.

Then we can define fuzzy vector Y = BTv and X = CTz whose elements are given by
the fuzzy variables Y = [Y1, Y2, Y3, · · · , Yk] and

Yd =
(
bT

d v, |bT
d |π
)

L
=

( ∑
S⊂K, S ̸=K

bdSv(S),
∑

S⊂K, S ̸=K

|bdS|πS

)
L

, (d = 1, 2, 3, · · · , k) (17)

where bT
d ∈ ℜ1 × ℜq is a d-th row vector of matrix BT and

∣∣bT
d

∣∣ = [|bd,1|, |bd,2|, |bd,3|, · · · ,
|bd,q|]. The vector π ∈ ℜq ×ℜ1 is the width representing ambiguity of fuzzy variables for
V (S).

Also X = [X1, X2, X3, · · · , Xk] is

Xd =
(
cT

d z, |cT
d |ζ
)

L
=

( ∑
S⊂K, S ̸=K

cdSzd,
∑

S⊂K, S ̸=K

|cdS|ζd

)
L

, (d = 1, 2, 3, · · · , k) (18)

where cT
d ∈ ℜ1 × ℜd is a d-th row vector of matrix CT and

∣∣cT
d

∣∣ = [|cd,1|, |cd,2|, |cd,3|, · · · ,

|bd,k|]. The vector ζ ∈ ℜk ×ℜ1 is the width representing ambiguity of fuzzy variables for
zd.

3.2. Possibility of equivalent for fuzzy Shapley value. Here we consider the follow-
ing possibility of equivalent Pos(Yd = Xd) for fuzzy variables, Yd and Xd, as follows,

Pos(Yd = Xd) = sup
θ∈ℜ

min (µYd
(θ), µXd

(θ)) , (19)

and the condition for α level set

Pos (Yd = Xd) ≥ α. (20)

Such definition implies the sets of vectors z and ζ consisting of the fuzzy vector X
under the condition as the possibility of equivalent between Yd and Xd is larger than α.
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Now that we can derive an LP problem to obtain fuzzy Shapley value by

Minimize
k∑

d=1

∣∣cT
d

∣∣ ζ + βϵ (21)

Subject to cT
d z − L−1(α)

∣∣cT
d

∣∣ ζ + s+
d − s−d ≤ bT

d v + L−1(α)
∣∣bT

d

∣∣π,

(d = 1, 2, 3, · · · , k)

cT
d z − L−1(α)

∣∣cT
d

∣∣ ζ + s+
d − s−d ≥ bT

d v − L−1(α)
∣∣bT

d

∣∣π,

(d = 1, 2, 3, · · · , k)
k∑

d=1

zd(K, v) = v(K)

zd ≥ 0, ζd ≥ 0, s+
d ≤ ϵ, s−d ≤ ϵ (d = 1, 2, 3, · · · , k)

In above LP model, the coefficient β is assumed to be given by an enough large value
and ϵ works significantly in case of α = 1.

3.3. Necessity of inclusion for fuzzy Shapley value. Next we consider the following
necessity of inclusion Nec(Yd ⊃ Xd) for fuzzy variables, Yd and Xd,

Nec(Yd ⊃ Xd) = inf
θ∈ℜ

max (µYd
(θ), 1 − µXd

(θ)) , (22)

and the condition for α level set

Nec (Yd ⊃ Xd) ≥ α. (23)

Such definition implies the sets of vectors z and ζ consisting of the fuzzy vector X
under the condition as the degree of necessity that Xd is included by Yd is larger than α.

In that case, we can derive an LP problem to obtain fuzzy Shapley value by

Minimize −
k∑

d=1

∣∣cT
d

∣∣ ζ + βϵ (24)

Subject to cT
d z + L−1(1 − α)

∣∣cT
d

∣∣ ζ + s+
d − s−d ≤ bT

d v + L−1(α)
∣∣bT

d

∣∣π,

(d = 1, 2, 3, · · · , k)

cT
d z − L−1(1 − α)

∣∣cT
d

∣∣ ζ + s+
d − s−d ≥ bT

d v − L−1(α)
∣∣bT

d

∣∣π,

(d = 1, 2, 3, · · · , k)
k∑

d=1

zd(K, v) = v(K)

zd ≥ 0, ζd ≥ 0, s+
d ≤ ϵ, s−d ≤ ϵ (d = 1, 2, 3, · · · , k)

4. Numerical Example and Discussion. We will show the difference between pro-
posed fuzzy Shapley value and normal Shapley value for three players, φ1, φ2, φ3. The
values of characteristic function are assumed fuzzy values, then their center v and width
π are observed as follows,

v =


v(φ1)
v(φ2)
v(φ3)

v(φ1, φ2)
v(φ1, φ3)
v(φ2, φ3)

 =


0.2

0.1667
0.3182

0.5
0.6444
0.5455

 , π =


π(φ1)
π(φ2)
π(φ3)

π(φ1, φ2)
π(φ1, φ3)
π(φ2, φ3)

 =


0.02
0.01
0.03
0.05
0.06
0.05

 (25)
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Matrices M and AT are defined by

M =


0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 ∈ ℜ6 ×ℜ6, (26)

AT =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ∈ ℜ3 ×ℜ6 (27)

And matrices BT and CT are calculated by

BT =

 0.5 0 0 0.5 0.5 0
0 0.5 0 0.5 0 0.5
0 0 0.5 0 0.5 0.5

 ∈ ℜ3 ×ℜ6, (28)

CT =

 1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

 ∈ ℜ3 ×ℜ3 (29)

Then the fuzzy variable Y is obtained as

Y =

 0.67220
0.60610
0.75405

 ,

 0.065
0.055
0.070


L

(30)

Figure 1. Fuzzy Shapley value based on possibility of equivalent (α = 1)

Figure 2. Fuzzy Shapley value based on necessity of inclusion (α = 1)
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In case of normal Shapley value with no ambiguity such as α = 1, the results for both
possibility of equality and necessity of inclusion are the same as follows,

z =

 0.3281
0.2620
0.4099

 (31)

Naturally the result is also the same as usual Shapley value without ambiguity (see Figures
1 and 2).

In case of fuzzy Shapley value with some ambiguity such as α = 0.7, the results for
possibility of equality and necessity of inclusion are different. The fuzzy Shapley value
based on possibility of equality is as follows (see Figure 3),

z =

 0.4381
0.2047
0.3572

 , ζ =

 0.5475
0
0

 (32)

This result about ζ can be controlled to other width pattern if we add adequate conditions
about them, because CT has no inverse matrix.

Also the fuzzy Shapley value based on necessity of inclusion is as follows (see Figure 4),

z =

 0.3286
0.2595
0.4119

 , ζ =

 0
0
0

 (33)

From this result, we can find that even if there is ambiguity in observed characteristic
function; however, necessity of inclusion for Shapley value has not always ambiguity.

Figure 3. Fuzzy Shapley value based on possibility of equivalent (α = 0.7)

Figure 4. Fuzzy Shapley value based on necessity of inclusion (α = 0.7)
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5. Conclusion. In this paper we first introduce the Shapley value derived by the linear
solvable formulation. From the linear model, the expansion formulation considering fuzzi-
ness to Shapley value can be obtained. The difference between proposed fuzzy Shapley
value and normal Shapley value for three players are shown in the numerical example.
Our model can derive fuzzy Shapley value for data with ambiguity in the possibility of
equivalent case and the necessity of inclusion case.
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