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ABSTRACT. Competition possesses an important role in ecology. Population diffusion
18 a common phenomenon. In this paper, we systematically study the dynamics of a
competitive system with linear diffusion. The explorations involve the existence and global
asymptotic stability. Based upon M -matrixz theory and graph theory, we obtain conditions
for equilibriums existence and global-stability. These results extend some recent known
ones for diffusion system.
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1. Introduction. Competition possesses an important role in the study of ecological
problems, which have been widely explored mathematically and biologically, and lots of
excellent results are obtained [1-5]. Indeed, a famous model for population dynamics is
the Lotka-Volterra competition system.

In real life, there are all kinds of diffusion effects. It is reasonable and practical to
study Lotka-Volterra competition systems with linear diffusion. However, most are just
for competitive systems without diffusion. Allen [6], by demanding a comparison theo-
rem, obtained a partial answer to the persistent and extinction problem for single-species
discrete diffusion systems.

Based upon M-matrix theory and graph-theory, Li and Fan [7,8] obtain conditions
for the system with linear diffusion of equilibriums existence and global-stability. These
results extend some recent known ones for prey-predator diffusion system.

In this paper, we utilize the graph-theory approach to investigate the global stability
of the competition system with one population travel among n patches. We consider the
following system:

T = xi(fi(@i) — €yi) + 2 au (T — x4), :
(f( ) y) ; ](] ) fOl"ZZl,---,n (1>
Ui = vi(9:(yi) — €imi)

where x; and y; stand for the population densities of competitors in the i-th patch and
fi(x;) and g¢;(y;) are the specific growth rates of competitors in the i-th patch. a;; is a
nonnegative diffusion coefficient for one competitor from j-th patch to i-th patch (i # j).
The parameters in the system are nonnegative, and e;, ¢; are positive. Much of the
previous work related to (1) can be found in [1-11] and references cited therein.
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We want to find all equilibriums by utilizing M-matrixs different from [7,8] and inves-
tigate stability of some equilibriums by utilizing assumptions different from [7,8].

The structure of this paper is as follows. In Section 2, we study equilibriums of system
(1). In Section 3, asymptotic stability of some equilibriums is demonstrated. The example
and conclusions are given in Section 4 and Section 5, respectively. For convenience and
simplicity in the following discussion, we always use the notations:

n
> a1 —aiz v —aip
i=2
n
—ao1 Y, Qg —Qop
L = i#2
n—1
—Qnl —Qnp2 Z Qnj
i=1
n
f1(0)=> o aie Qln
i=2
n
Q21 f2(0)=3" o Q2p
M = i#2
n—1
Anl an2 fn(o)_ z Qnjg
i=1
n
J1(0)=3>" a1, aij Q1541 ain
=2
n
Qg1 fk(o)_§_akz ki1 Qkn
i#£j
Ml = 1 n
Qpt1,1 Q41,5 Fet1(0)—ept19, 1 (0)— > apt1, Qk41,n
1#j+1
_ n—1
Qanl Qpj Qn j+1 < fn(0)—engn (0)= > ani
k=1
f1(0)—erg=1(0)= 3 au; aij Qln
i=2
1 n
M,y = g1 Jr(0)—erg™ (0)—;% Okn
i#£j
1 n—1
Qnl Qnj f’ﬂ(o)_engn (0)_ Z Qni
k=1

and s(M) denotes the maximum real part of all eigenvalues of matrix M. In system (1),
we assume that
(H2) £i(0) — e;974(0) > 0, f(z;) — eigl-‘_l(aixi) <Ofori=Fk+1,--- n;
(H3) £:(0) — e;971(0) > 0, f(2:) — esgy (i) < O fori=1,-- ,m;
(H4) f(zi)gi(y:) — eiei <0 for any w;, y;;
J#i
In the first section, we introduce the background of the problem (1) and some notations.

2. Existence of Equilibriums. We study equilibriums of system (1). In order to find
the equilibriums of (1), we give the following system

il JilTi) — €y; ij(r; — i) =0, ;
zi( fi(zi) ey)+j§ia3(£€j =) fori=1,---,n (2)

vi(9i(yi) — eiz;) = 0.
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Theorem 2.1. The system (1) always has a trial equilibrium Ey = (0,0,---,0,0).

Clearly, Ey = (0,0,---,0,0) is zero-solution of system (2), which means Fy = (0,0, - -,
0,0) is trial equilibrium of system (1).

Theorem 2.2. The system (1) has an equilibrium Ey = (10,0, - , Zno,0) if the following
conditions are satisfied

(1) L is irreducible,

(2) (H1) holds,

(3) s(M) > 0.
In fact, (10, ,Tn0) is a positive equilibrium of
T :xi(fi<xi))+zaij($j —x;) fori=1,--- n. (3)
J#1

Proof: Readers can read reference [7-9] for proof of the theorem.

Theorem 2.3. The system (1) has an equilibrium E = (0,410, ,0, yno) if the following
conditions are satisfied

(1) L is irreducible,

(2) (H1) holds.

In fact, (y10, - ,Yno) is & positive equilibrium of
Ui = vigi(y;) fori =1, n. (4)
We know (4) always has a trial equilibrium, also (4) has a positive equilibrium (y10, * - *, Yno)
if ;(0) > 0 and g;(z;) < 0 by H(1).
Theorem 2.4. The system (1) has an equilibrium Ey = (10,0, , 0,0, T 1, Y1 -

xk,yr), if the following conditions are satisfied
(1) L is irreducible,

(2) (H1), (H2) hold,

(3) s(My) > 0.

Here 7 > 0, yf > 0, for i = k+1,--- ,n. We change the order of the equations, and
there is always an equilibrium Fy = (210,0, -+, Zr0, 0, 5y, Ypiy = - Ty Us)-

Proof: In this section, we prove that Fs exists if s(M;) > 0and y; =0fori=1,--- k.
Therefore, we need to consider the following system.

( n
;= z;(fi(x:)) + ;aij(mj — ;)
j#i
y =0fori=1,---k
& =z filws) — eyi) + 3 ay(w; — x3)

J#i
L ¥ = vi9i(ys) —eixy), fori=k+1,--- n.

We know g; ! exists and gi'_1 <0by H(1).

i’i = xz(fz($z)) + Z O[Z‘j(l’j — l’z> fOI‘ 7= 17 R ,k’

JFi " (6)
jfi = J]Z(fz<l’z> — 619;1(5ZZL‘1)) + Z Oéij(l‘j — l‘i), fori=%k + ]., s, M.
JF
System (6) has a positive equilibrium (19, -+, Tpo, 5y, - -+, 25) if (M) > 0 and (H1),
(H2) hold [7-9]; therefore, system (1) has an equilibrium
E2 = ('rl()v 07 c Tk, 07 szrla Z/ZH o 7'%.;7 ZJ;%

where y} = g; '(e;x}) for i = k +1,--- ,n. Readers may prove y; > 0 by themselves [8].
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Theorem 2.5. The system (1) does not have equilibrium
Ey = (0,910, 5 0,Yk0s Thp1s Vi1 T YUn)-
Readers may prove this theorem by themselves [7].

Theorem 2.6. The system (1) has a positive equilibrium E* = (z3,y5,- - , x5, y"), if the
following conditions are satisfied

(1) L is irreducible,

(2) (H1), (H3) hold,

(3) s(Msy) > 0.

Proof: Applying Theorem 2.2, we give following form:

= x;(fi(w:) — zgz (eixi)) + ZO‘W , fore=1,--- n. (7)

J#i
System (7) has a positive equilibrium (z73,---,x%) by S(MQ) > 0 and (H1), (H3) [9];
therefore, system (1) has an equilibrium Ey = (2%, 9" --- , 2%, y*), where y} = g; ' (e;27)

fori=1,--- n.
Theorem 2.7. Suppose x;(0),y;(0) > 0 fori = 1,--- .n, T : {((x1,91," 1 Tn,Yn) €
R* /2, y; > 0,1 < Tio, ¥i < Yio)} 18 positive invariance of system (1).

Proof: First, we consider for all i, for all ¢, z;(¢), y;(t) > 0 in condition x;(0), y;(0) > 0,
suppose there exists T > 0 and z;(7") = 0,2,;(T) > 0, then %,(T) = zn:ozijxj(T) > 0

Similar steps y; > 0, then

(fz xz ezyz + Zau < mzfz mz + Zazg Z)
J# J#
Suppose x; = Tio, T; < Tjo,
n
vimaio < Tiofi(Tio) + Z a;j(zjo — xi0) = 0.
j=1

;

So, for all i, there exists x;, x; < .

Similar steps for all ¢, there exists y;0, ¥; < ¥io-

Therefore, T': {((z1, Y1, , Tn, Yn) € B¥/wi,y; > 0,2 < Tio, Y < Yio)} 18 positive in-
variance of system (1), which means uniform boundedness of solution in I'/{ Ey, E1, E}, Es}.

3. Global Asymptotic Stability of Equilibriums.

3.1. Boundary equilibriums. In this section, we will prove the global asymptotic sta-
bility of boundary equilibriums Ey, F4, Ef.

Theorem 3.1. If s(M) < 0 and (H1) holds, Ey is global asymptotic stability, and if
s(M) >0, Ey is unstable.

Readers can read reference [7,8] for proof of the theorem.
Theorem 3.2. Suppose assumption (H1), (H4) hold, E is global asymptotic stability.

Proof: Denote the boundary equilibrium E; = (29,0, -+, 2,0,0) about system (1).
Here

xz()(fz -rzO Z Qi -r]O fEm) =0 for:= 1
J#i
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Consider a Lyapunov function for a single patch predator-prey model

Ty
Vi(zi,yi) = & (% — Tjp + Tjp In —) + €iy;. (8)

40

We show that V; satisfies the assumption of Lemma 1 [9],

Vi = ei(wi — zio)— + €l
T
= &f(ﬁ)(fﬁz i0)? — 2ei8i(; — Ti0)yi + €:g(n)y}

J Je
—1—204”82%0 (———+1——).
j= Z 50 X0 T

By (H1), (H4) assumptions, then

“/; < Z Q€T 50 (1 N M +In xjxlo) + Z Q€T 50 [(& i &> - <& o ﬁ):|
l’ .

=1 X j0x; Xjox j= 50 Zj0 Tio T
n
< Zlozijei:vj[(Hj(fcj)) — (Hi(zs))]
j=

and H;(z;) and ay; satisfy the assumption of Lemma 1 and Lemma 2 [9], then V; < 0.
Therefore, the function

n

V('Ilvyla”' 7xn7yn)zzci‘/i('riayi)v 221, ,n

=1

as defined in Lemma 2 [9] is a Lyapunov function for (1), and V < 0 for all (21,41, - - - , Zn,
yn) € R

This also implies that the only compact invariant set on which V =0is 2; = x40, Yi =
0,i =1,---,n is the singleton E;. The LaSalle Invariance principle [12] implies that E;
is global asymptotically stable. This also implies that E; is unique, completing the proof
of Theorem 3.2.

Theorem 3.3. Suppose s(M) > 0 and (H5) holds, if s(N) < 0, Ef is global asymptotic
stability, and if s(N) > 0, Ef is unstable.

Here
f1(0) + e1yio — > oy 12 Q1
i=2
Q91 f2(0) + €2y — > gy - - Qiap,
N = 22
(07751 Qn2 fn(0)+enyn0_ Z Qi

i=1
Proof: First let N = diag{e;y,} — F, where

€1Y10 0 s 0
) 0 e < 0
dlag{ei?/io} = 2420
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and
—f1(0) + > oy —Q2 —Q1y
i=2
—Q9q —f2(0) + > ay —Qp
F = i£2

PSP e

—Qn1 —Qp2 _fn(()) + Z Qi
=1

Since diag{e;y;o} is a non-negative and F' is non-singular M-matrix. N = diag{e;yio} —
F has Z sign pattern [7,8,13].

s(N) < 0 <= p(diag  {eyi } F) > 1

Let (wy, -+ ,wy) be left eigenvalue of diag={e;y0 } F corresponding p(diag~'{e;yi} F) >

1. Since diag='{e;yio} F is irreducible, we know w; > 0,i =1,--- ,n [13].
Set
V = i ZT;
iYi0
we obtain

. n W
VZ(_ ] ( (fz 93'2 — €Y; +Zaz] z)

3751
< fz + ezyz az Z;
z':z1 €iYio ( o " ; ! ) 9)
w1
— e diag{e;y; F)(z1, - 2,)T
€1Y10 €nyno ( g{ yO} )( ' )
= (wla"' 7(")71)( (dlagi {elyZO}F))<x1a 71"71)T

and the equal sign holds if and only if y; = 0,2 = 1,--- ,n. Therefore, by LaSalle
Invariantce principle [12], £ is global asymptotic stability.
We will discuss the stability of E5 in future.

3.2. Positive equilibrium. In this section, we will prove the positive equilibrium of the
system (1) is global asymptotic stability if it exists.

Theorem 3.4. Suppose assumption (H1), (H4) hold, then positive equilibrium E* =
(xf,yf, -+, xk, k) of system (1) is global asymptotically stable.

Proof: First, we suppose the positive equilibrium exists.

Denote the positive equilibrium E* = (23,7, - 2k, yk), 25, yf > 0, fori=1,---|n
about system (1). Here

i (fi(x}) — eyi) + Z iy — ) =0,

y; (9:(y;) — eixi) = 0.

fori=1,---,n (10)

Consider a Lyapunov function in [7-9] for a single patch predator-prey model

Vizi,ys) = & (xz —xf + 2 In x—i) + e; (yi —y'+y'ln y—i) ) (11)
z Y

7 %
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We show that V; satisfies the assumption of Lemma 1 [9],
Vi=eile; —xi)— +elyi —y;)—
6(5}6 w), el s
= eif (&) (@i — 27)* = 2eie(wi — =) (i — i) + ed(n) (i — )?
+ 2 e (m—i—x—iﬂq—%
By (H1), (H4) assumptions, then

*

Vi <> aijaix;f <1 — x]*i + ln@) + > Ozij&'a:;f [(x—i + lnx—i) — (x_: + lnx—i)]
< 2 aea|(Gly) — (Gila))]
J=

and G;(x;) and o; satisfy the assumption of Lemma 1 and Lemma 2 [9], then Vi < 0.
Therefore, the function

V(»’Ul,yl,"‘ 7xn7yn)zzci‘/i(xiuyi)7 2217 y TV
=1

as defined in Lemma 2 [9] is a Lyapunov function for (1), and V' < 0 for all (21,41, - - , Zn,
Yn) € R

This also implies that the only compact invariant set on which V = 0 is z; = TS
yr,i=1,---,nis the singleton E*. The LaSalle Invariance principle [12] implies that E*
is global asymptotically stable. This also implies that E* is unique, completing the proof
of Theorem 3.4.

Remark 3.1. When (3;; is a nonnegative diffusion coefficient for another competitor from
j-th patch to i-th patch (i # j), system (1) becomes the following n-patch competitive
system

& = xi(fi(wi) — ewi) + i aij(; — i),
=1 fori=1,---.n (12)
Ui = vi(9i(yi) — eizs) + Zlﬁzj(yj — i)

We can prove the positive equilibrium not only exists but is globally asymptotically
stable under simple assumptions.

4. Example. Consider the following coupled system

1 = 21(1 — 21 — y1) + 2(x2 — 21),

U= yi(1 =y — 211), (13)
i’g = IL‘Q(l — T9 — 3y2) + 2([E1 — 172),
U2 = ya(1 — 2yp — 3x2)

-1 2 -1 2
where M = (2 _1>7 S<M> > 0, N = (2 05)7 5<N> > 0, M, = (2 —2.5>’

s(My) >0, My = (

5 _9 5), s(My) > 0. Ey, E are unstable, F;, E* are stable.

5. Conclusions. In this paper, we consider a competitive dynamical system in a patchy
environment where population individuals in each compartment can travel among n
patches. Under some minimal assumptions, we obtain conditions for boundary equilibri-
ums existence. We also obtain sufficient conditions under which the positive equilibrium
is asymptotically stable as long as it exists. Many factors influence the local persistence
or extinction of a particular species. One of these factors is the species dispersal pattern.
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The movement of some species can be described as linear diffusion or nonlinear diffusion.
We will study nonlinear diffusion system in the future.
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