
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 3, March 2016 pp. 691–697

PERFORMANCE CONSIDERATIONS FOR WRITING DATA
TO SOLID-STATE DRIVES

Shih-Yu Liu, Dereje Tekilu Aseffa and Chin-Hsien Wu

Department of Electronic and Computer Engineering
National Taiwan University of Science and Technology

No. 43, Sec. 4, Keelung Rd., Da’an Dist., Taipei City 106, Taiwan
{M9902135; chwu }@mail.ntust.edu.tw; dereteklu@gmail.com

Received November 2015; accepted January 2016

Abstract. In recent years, solid-state drives (SSDs) which use NAND flash memory
have become popular and have replaced traditional hard-disk drives in some applications.
Due to the characteristics of NAND flash memory, the management activities inside
SSDs could degrade the access performance. In the paper, we will analyze and consider
the performance for writing data to SSDs. The objective of the paper is to achieve a
moderate decline in overall speed for SSD-based storage systems.
Keywords: Non-volatile storage systems, Solid-state drives, Performance

1. Introduction. In recent years, solid-state drives (SSDs) which use NAND flash mem-
ory have become popular and have replaced traditional hard-disk drives in some applica-
tions. However, users cannot directly overwrite data in NAND flash memory. We must
write the new data in a new location and then invalidate the old data due to the char-
acteristics of NAND flash memory. The invalid data will be recycled by the activities
of garbage collection inside SSDs. Therefore, performance considerations for SSDs must
be investigated to improve the overall access speed and lifetime of SSDs. Based on the
observations on SSDs, large amounts of written data could consume more free space and
also cause frequent activities of garbage collection to degrade writing speed. Therefore,
we must consider the information of written data and storage devices, and effectively
distribute data with a moderate decline in overall speed for SSDs. We list the major
contributions of the paper in the following.

• Three SSDs are used to conduct our investigations: Intel 320 40G SSD, Intel 320
160G SSD, and ADATA S599 40G SSD. Two experiments, that is, “changing the
size of the write request” and “changing the update ratio of the written data”, were
performed for each SSD under actual workloads and simulated workloads.

• We propose two distribution rules for append data and update data, respectively.
Based on our observations, the distribution rules must consider (1) the writing speed
of SSDs, (2) the size of the write request, (3) the update ratio of the written data
(i.e., hot/cold data), and (4) the declining speed ratio of SSDs.

The rest of this paper is organized as follows. Section 2 is the related work and motiva-
tion. Section 3 proposes performance considerations for writing data to solid-state drives.
Finally, Section 4 is the conclusion.

2. Related Work and Motivation. Many previous studies [1-7] have used NAND flash
memory in different storage systems to improve the storage performance. Different from
the previous work, the proposed method will consider (1) the writing speed of SSDs, (2)
the size of the write request, (3) the update ratio of the written data, and (4) the declining
speed ratio of SSDs, when large amounts of data are stored in SSDs. Furthermore, the

691

692 S.-Y. LIU, D. T. ASEFFA AND C.-H. WU

previous work did not differentiate between append data and update data, which may re-
sult in an uneven distribution of data in SSDs and reduce the overall speed. Furthermore,
because we could buy different models of SSDs at different times, it is possible to install
them at the same time. From the economic point of view, we should continue to use
them until they are damaged. Especially when the hardware resources (e.g., CPU, main
memory, and storage devices) are abstracted into virtual resources for virtual machines,
we should integrate the different models of SSDs into a logical view of storage device.
Therefore, the objective of the paper is to investigate and consider the performance of
SSDs when they are integrated into storage systems.

3. Performance Considerations for Writing Data to Solid-State Drives.

3.1. Overview. As shown in Figure 1, the proposed method can be adopted in a logical
view of storage device that consists of N different storages (e.g., SSDs), where the device
mapping is a mechanism to integrate and manage all the storages. When the written data
will enter the logical view of storage device, the written data can be distinguished between
the append data and the update data. If the written data are the append data or the
update data, two distribution rules can be applied to the corresponding data, respectively.
Using the two distribution rules, high-performance SSDs can be achieved.

Figure 1. System architecture

3.2. Observations about writing speed of SSDs. We have employed three SSDs to
conduct our experiments: Intel 320 40G SSD, Intel 320 160G SSD, and ADATA S599 40G
SSD. Note that the initial capacity utilization of the three SSDs is zero. Two experiments,
that is, “changing the size of the write request” and “changing the update ratio of the
written data”, were performed for each SSD to measure the writing speed of SSDs. The
workloads for the experiments included actual workloads by MSR [8] and simulated work-
loads by Iometer [9]. The written data can be separated into the append data (A data)
and the update data (U data), where A data can affect SSDs’ space utilization.

In the first experiment, we observe the relationship between the size of the write request
and the writing speed of SSDs. In Figure 2(a) and Figure 2(b), we used two SSDs: Intel
320 40G SSD and ADATA S599 40G SSD, to conduct experiments. Total written data
were 10GB, where A data and U data in the workloads were 5GB, respectively. The size
of each write request was among 4KB, 8KB, 16KB, 32KB, and 64KB. We can observe

ICIC EXPRESS LETTERS, VOL.10, NO.3, 2016 693

(a) Writing speed for Intel 40G SSD

(b) Writing speed for ADATA 40G SSD

(c) Writing speed for Intel 160G SSD

Figure 2. Writing speed of SSDs

that large write requests can have better writing speed than that of small write requests.
This is because large write requests can efficiently utilize the total bandwidth of SSDs.
As shown in Figure 2(c), we also used the same workloads for Intel 320 160G SSD and
got the similar results. Overall, the size of the write request can be an important factor
for SSDs and large write requests could tend towards high writing speed for SSDs. When
a write request is large enough (e.g., > 32KB), its writing speed will become stable for all
SSDs used in the experiments. Because the initial capacity utilization of the three SSDs
is zero, we use the stable writing speed as the initial average writing speed.

694 S.-Y. LIU, D. T. ASEFFA AND C.-H. WU

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 5
2

 1
03

 1
54

 2
05

 2
56

 3
07

 3
58

 4
09

 4
60

 5
11

 5
62

 6
13

 6
64

 7
15

 7
66

 8
17

 8
68

 9
19

 9
70

 1
02

1
 1

07
2

 1
12

3
 1

17
4

 1
22

5
 1

27
6

 1
32

7
 1

37
8

 1
42

9
 1

48
0

 1
53

1
 1

58
2

 1
63

3
 1

68
4

 1
73

5

W
ri

tin
g

sp
ee

d(
K

B
/s

)

Time(s)

Degrade LineNormal Area Degrade Area

A_data= 5GB U_data=45GB
A_data=10GB U_data=40GB
A_data=15GB U_data=35GB
A_data=20GB U_data=30GB
A_data=25GB U_data=25GB
A_data=30GB U_data=20GB
A_data=35GB U_data=15GB

(a) Degrade line for Intel 40G SSD

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 1 4
1

 8
1

 1
21

 1
61

 2
01

 2
41

 2
81

 3
21

 3
61

 4
01

 4
41

 4
81

 5
21

 5
61

 6
01

 6
41

 6
81

 7
21

 7
61

 8
01

 8
41

 8
81

 9
21

 9
61

 1
00

1
 1

04
1

 1
08

1
 1

12
1

 1
16

1
 1

20
1

 1
24

1
 1

28
1

 1
32

1

W
ri

tin
g

sp
ee

d(
K

B
/s

)

Time(s)

Degrade LineNormal Area Degrade Area

A_data= 5GB U_data=45GB
A_data=10GB U_data=40GB
A_data=15GB U_data=35GB
A_data=20GB U_data=30GB
A_data=25GB U_data=25GB
A_data=30GB U_data=20GB
A_data=35GB U_data=15GB

(b) Degrade line for ADATA 40G SSD

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 1 5
2

 1
03

 1
54

 2
05

 2
56

 3
07

 3
58

 4
09

 4
60

 5
11

 5
62

 6
13

 6
64

 7
15

 7
66

 8
17

 8
68

 9
19

 9
70

 1
02

1
 1

07
2

 1
12

3
 1

17
4

 1
22

5
 1

27
6

 1
32

7
 1

37
8

 1
42

9
 1

48
0

 1
53

1
 1

58
2

 1
63

3
 1

68
4

W
ri

tin
g

sp
ee

d(
K

B
/s

)

Time(s)

Degrade LineNormal Area Degrade Area

A_data= 20GB U_data=180GB
A_data= 40GB U_data=160GB
A_data= 60GB U_data=140GB
A_data= 80GB U_data=120GB

A_data=100GB U_data=100GB
A_data=120GB U_data=80GB
A_data=140GB U_data=60GB

(c) Degrade line for Intel 160G SSD

Figure 3. Degrade line of SSDs

In the second experiment, we observe the relationship between the update ratio of
written data and the writing speed of SSDs. Total written data were 50GB for Intel 320
40G SSD and ADATA S599 40G SSD, and 200GB for Intel 320 160G SSD. The size of the
write request was 64KB and the update ratio of written data was according to the size of
U data. As shown in Figure 3(a), Figure 3(b), and Figure 3(c), we can identify the normal
area and the degrade area by a degrade line. The normal area denotes that the writing
speed will not be affected significantly and the degrade area denotes that the writing
speed will degrade gradually due to garbage collection inside SSDs. The degrade line is to
separate the normal area from the degrade area. The reason for the degrade area is that
when a lot of data were appended to SSDs, available free space will become low and the
activities of garbage collection will be triggered to reclaim free space. Furthermore, we
can observe that when the writing speed is in the degrade area, the higher ratio of append
data can consume more free space and cause more activities of garbage collection such
that the writing speed will degrade significantly. We also summarize the declining speed
ratios in Table 1 which contains 7 declining regions for different ratios of append data.

ICIC EXPRESS LETTERS, VOL.10, NO.3, 2016 695

Table 1. Declining speed ratios of SSDs

Region Number Ratio of Append Data Intel 40G Intel 160G ADATA 40G

0 12.5% 98% 100% 99.5%

1 25% 92.7% 93.7% 94.6%

2 37.5% 85.7% 81.2% 91.9%

3 50% 73.4% 75% 85.9%

4 62.5% 59.7% 68.7% 72.1%

5 75% 40.3% 55% 56.8%

6 87.5% 20.6% 41.8% 42.4%

Table 2. Parameters used in the distribution rules

Average writing speed in the normal area for SSD storage j Wj

Declining speed ratio of region number s for SSD storage j αs
j

Space utilization ratio of region s for SSD storage j U s
j

An SSD’s current writing speed is the average writing speed multiplied by the declining
speed ratio. Therefore, a small declining speed ratio means that the SSD’s current writing
speed has been reduced. Therefore, different SSDs exhibit different writing speeds, and
different space utilization of the same SSD also exhibit different declining speed ratios.
Therefore, how to distribute the append data among SSDs for slowing the declining speed
ratio will become an important factor for SSDs.

Based on the experimental results, the distribution rules must consider (1) the writing
speed of SSDs, (2) the size of the write request, (3) the update ratio of the written data,
and (4) the declining speed ratio of SSDs.

3.3. Consideration 1: A distribution rule for append data. In the distribution rule
for append data, we consider the writing speed of SSDs, the size of the write request, and
the declining speed ratio of SSDs. Therefore, for each SSD storage j, we can calculate its
Budgetj whose formula is the following: Note that the parameters used in the distribution
rules are listed in Table 2. For example, as shown in Table 1, the declining speed ratio of
region s = 2 for Intel 320 40G SSD (i.e., α2

Intel40G) is 85.7%.

Budgetj =
Wj ×

(
αs

j ×
(
1 − U s

j

))∑n
k=0 Wk × (αsk

k × (1 − U sk
k))

(1)

Budgetj denotes the unit weight of the current writing speed ratio for SSD storage j
under region s. The current writing speed of SSD storage j with small Budgetj can be
better than that with large Budgetj. Large Budgetj means that the current writing speed
of SSD storage j has been decreased. In particular,

(
1 − U s

j

)
denotes the unused space

ratio for SSD storage j in region s and αs
j ×

(
1 − U s

j

)
denotes the declining speed ratio

of the unused space ratio for SSD storage j in region s. Wj ×
(
αs

j ×
(
1 − U s

j

))
denotes

the current writing speed that has dropped to αs
j of Wj for SSD storage j in region s.∑n

k=0 Wk × (αsk
k × (1 − U sk

k)) are the sum of the current writing speed for all storages
under their current region sk. The design idea of Budgetj in the distribution rule is that
we can fairly distribute append data to SSDs and smoothly decrease Budgetj to help with
a moderate decline in overall speed for SSDs.

Based on the previous experimental results, we can set a threshold (e.g., 32KB) for the
size of the write request. When the size of the write request is larger than the threshold,
the distribution rule will forward the write request to the current fastest storage j whose

696 S.-Y. LIU, D. T. ASEFFA AND C.-H. WU

Budgetj is greater than 0. When the size of the write request is less than the threshold,
the distribution rule will forward the write request to SSDs in a sequential order. This
is because small write requests will not totally utilize SSDs’ bandwidth and data can be
fairly written to each SSD storage.

3.4. Consideration 2: A distribution rule for update data. In the distribution rule
for update data, we consider the writing speed of SSDs, the update ratio of the written
data (i.e., hot/cold data), and the declining speed ratio of SSDs.

The design idea of Budgetj in the distribution rule is that we can fairly distribute update
data to SSDs and smoothly decrease Budgetj to help with a moderate decline in overall
speed for SSDs. Therefore, the distribution rule should avoid large Budgetj. Assume that
SSD storage a has the maximum Budgeta and SSD storage b has the minimum Budgetb.
When the write request is update data, the distribution rule will use the hot/cold data
detection method to determine whether the write request is hot or cold data. Usually,
hot data could cause more invalid data and cold data could occupy more free space. If
the write request is hot data and will enter into SSD storage b, the distribution rule will
forward the write request to SSD storage a. On the other hand, when cold data will
enter into SSD storage a, the distribution rule will forward the cold data to SSD storage
b. If the write request is cold data, it means that the write request could occupy more
free space because the cold data could not be deleted or updated frequently. If the write
requests (that contain a lot of cold data) are written to an SSD, the SSD’s available free
space will become low and the activities of garbage collection will be triggered to reclaim
free space such that its Budget could become large. The situation is like a lot of data are
appended to SSDs. Therefore, we treat hot and cold data differently in the distribution
rule. Therefore, the distribution rules for append data and update data can help with a
moderate decline in overall speed for SSDs by the Budgetj formula.

4. Conclusions. In the paper, we analyze and consider the performance by generating
a high volume of writes/updates on SSDs. We provide a detailed analysis on data dis-
tribution for SSD-based storage systems to achieve a moderate decline in overall speed
for SSD-based storage systems. We propose two distribution rules for append data and
update data by considering the observations: (1) the size of the write request can be an
important factor for SSDs and large write requests can tend towards the high writing
speed for SSDs; (2) the higher ratio of append data can consume more free space and
cause more activities of garbage collection such that the writing speed will degrade signif-
icantly. The proposed distribution rules must consider the information of append/update
data and storage devices, and effectively distribute data with a moderate decline in overall
speed for SSDs.

For future research, we should further explore different workloads and the designs of
SSD-based storage systems. Especially, how to efficiently run I/O-intensive applications
(i.e., sorting) on virtual-machine hybrid storage systems will become an important re-
search topic. Furthermore, a sophisticated customization of SSD-based storage systems
and tool platform will become important issues.

Acknowledgement. This work was partially supported in part by a research grant from
the Ministry of Science and Technology under Grant MOST 103-2221-E-011-065-MY2.

REFERENCES

[1] C.-K. Kang, Y.-J. Cai, C.-H. Wu and P.-C. Hsiu, A hybrid storage access framework for high-
performance virtual machines, ACM Trans. Embedded Computing Systems, vol.13, 2014.

[2] K. Liu, X. Zhang, K. Davis and S. Jiang, Synergistic coupling of SSD and hard disk for QoS-aware
virtual memory, IEEE International Symposium on Performance Analysis of Systems and Software,
pp.24-33, 2013.

ICIC EXPRESS LETTERS, VOL.10, NO.3, 2016 697

[3] D. Jiang, Y. Che, J. Xiong and X. Ma, uCache: A utility-aware multilevel SSD cache manage-
ment policy, IEEE International Conference on High Performance Computing and Communications,
pp.391-398, 2013.

[4] R.-S. Liu, C.-L. Yang, C.-H. Li and G.-Y. Chen, DuraCache: A durable SSD cache using MLC
NAND flash, ACM/IEEE Design Automation Conference, pp.1-6, 2013.

[5] Y. Zhu, Y. Yu, W. Y. Wang, S. S. Tan and T. C. Low, A balanced allocation strategy for file
assignment in parallel I/O systems, IEEE Networking, Architecture and Storage, pp.257-266, 2010.

[6] S. Jung, Y. Lee and Y. H. Song, A process-aware hot/cold identification scheme for flash memory
storage systems, IEEE Consumer Electronics, vol.56, no.2, pp.339-347, 2010.

[7] D. Park and D. H. C. Du, Hot data identification for flash-based storage systems using multiple
bloom filters, IEEE Mass Storage Systems and Technologies, pp.1-11, 2011.

[8] Microsoft, SNIA IOTTA Repository: MSR Cambridge Block I/O Traces, http://iotta.snia.org/tra-
ces/list/BlockIO.

[9] Iometer Website, http://www.iometer.org/.

