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Abstract. This paper focuses on the problem of neural networks (NNs)-based adap-
tive backstepping control for permanent magnet synchronous motors (PMSMs) with pa-
rameter uncertainties and load torque disturbance. Based on backstepping technique, an
adaptive neural network control method is proposed by using neural network systems
to approximate unknown nonlinearities of permanent magnet synchronous motor drive
system. The proposed adaptive neural network controller guarantees the tracking error
converges to a small neighborhood of the origin. Then, the simulation results demonstrate
the effectiveness of the proposed approach.
Keywords: Permanent magnet synchronous motor, Adaptive control, Neural networks,
Backstepping

1. Introduction. Permanent magnet synchronous motors (PMSMs) have been widely
used in many industrial control fields due to its high power density and high efficiency
over other kinds of motors such as induction motors and DC motors. However, on the
other hand it is still a challenging problem to control permanent magnet synchronous
motors to get the perfect dynamic performance because its dynamic model is usually
multivariable, coupled and highly nonlinear. And the main disadvantage of the motor
drive is that PMSM needs a more complex controller for high performance industrial
applications. The control strategies based on recent modern control theories such as back-
stepping control [1], sliding mode control [2] and other control methods [3] are put for-
ward to meet high performance application requirements of industrial applications. The
backstepping-based adaptive control technique has become one of the most popular non-
linear control approaches because of its ability to clear up the influence of the uncertain
parameter, particularly those systems that do not satisfy the matching conditions. The
most appealing point of it is to use the virtual control variable to make the original
high order system simple; thus, the final control outputs can be derived systematically
through the suitable Lyapunov functions. Recently, neural network (NN) approximation
[4,5] method has attracted great attention in PMSM drive systems because of its inherent
capability for modeling and controlling highly uncertain, nonlinear and complex systems.
The controller based on neural network has been applied to a broad range of engineering
problems. Hence, neural networks can be used to deal with uncertain factors in nonlinear
systems, and furthermore, be applied to controlling these systems which are ill-defined or
too complex to have a mathematical model. It has been found one of the popular and
conventional tools in functional approximations.

This paper is based on the dynamic mathematical model of PMSMs and designs an
adaptive NN controller to realize the position tracking control. During the controller design
process, NN systems are employed to approximate the nonlinearities. And the adaptive
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technique and backstepping are used to construct NN controller. The simulation results
show that the adaptive NN control guarantees that PMSMs servo drives have a good
tracking performance [6] even with the unknown parameters and load disturbances.

The remainder of this paper is organized as follows. The model of PMSM drive system
is described in Section 2. Then the controller design of PMSM system is developed in
Section 3. And its stability is analyzed in Section 4. The simulation results of the PMSM
position control system are given in Section 5. Finally, some conclusions are presented.

2. Modeling of PMSM Drive System. The mathematical model of PMSM drive
system can be described in the well-known d-q frame as follows [7]:

dΘ

dt
= ω,

dω

dt
=

3np

2J
[(Ld − Lq)idiq + Φiq] −

Bω

J
− TL

J
,

did
dt

=
(−Rsid + npωLqiq + ud)

Ld

,

diq
dt

=
(−Rsiq − npωLdid − npωΦ + uq)

Lq

.

(1)

where Θ, ω, np, J , B, TL, Φ denote the rotor position, rotor angular velocity, pole pair,
rotor moment of inertia, viscous friction coefficient, load torque and magnet flux linkage.
id and iq stand for the d-q axis currents. ud and uq are the d-q axis voltages. Ld and Lq

are the stator inductors.
For simplicity, the following notations are introduced:

x1 = Θ, x2 = ω, x3 = iq, x4 = id, a1 =
3npΦ

2
,

a2 =
3np(Ld − Lq)

2
, b1 = −Rs

Lq

, b2 = −npLd

Lq

, b3 = −npΦ

Lq

,

b4 = − 1

Lq

, c1 = −Rs

Lq

, c2 =
npLq

Ld

, c3 =
1

Ld

.

(2)

By using these notations, the dynamic model of PMSM driver system can be described
by the following differential equations:

ẋ1 = x2,
ẋ2 = (a1x3 + a2x3x4 − Bx2 − TL)/J,
ẋ3 = b1x3 + b2x2x4 + b3x2 + b4uq,
ẋ4 = c1x4 + c2x2x3 + c3ud.

(3)

In this paper, the radial basis function (RBF) NN [8] will be used to approximate the
unknown continuous function ϕ(z) : Rq → R as φ̂(z) = ϕ∗T P (z), where z ∈ Ωz ⊂ Rq is

the input vector with q being NN input dimension, ϕ∗ = [φ∗
1, . . . , φ

∗
n]T ∈ Rn is the weight

vector with n > 1 being the NN node number, and P (z) = [p1(z), . . . , pn(z)]T ∈ Rn is the
basis function vector with pi(z) chosen as the commonly used Gaussian function in the

following form: pi(z) = exp
[
−(z−νi)

T (z−νi)

q2
i

]
, i = 1, 2, . . . , n, where νi = [νi1, . . . , νiq]

T is

the center of the receptive field and qi is the width of the Gaussian function. It has been
shown in that, for a given scalar ε > 0, by choosing sufficiently large l, the RBF NN can
approximate any continuous function over a compact set Ωz ∈ Rq to an arbitrary accuracy
as φ(z) = ϕT P (z) + δ(z), ∀z ∈ Ωz ⊂ Rq, where δ(z) is the approximation error satisfying
|δ(z) ≤ ε| and ϕ is an unknown ideal constant weight vector, which is an artificial quantity
required for analytical purpose. Typically, ϕ is chosen as the value of ϕ∗ that minimizes

|δ(z)| for all z ∈ Ωz, φ := arg min
φ∗∈Rn

{
sup
z∈Ωz

∣∣ϕ(z) − φ∗T P (z)
∣∣}.
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3. Adaptive Neural Network Controller Design with Backstepping Technique.
In this section, we will design a controller for the PMSMs based on backstepping.
Step 1: For the reference signal xd, we define the tracking error variable as z1 = x1 − xd.

From the first differential equation of (1), the error dynamic system is computed by

ż1 = x2 − ẋd. Choose a Lyapunov function candidate as V1 =
z2
1

2
, and then the time

derivative of V1 is computed by

V̇1 = z1ż1 = z1 (x2 − ẋd) (4)

Construct the virtual control law α1 as α1 = −k1z1 + ẋd, with ki > 0 (i = 1, 2, 3, 4)
being a design parameter and z2 = x2−α1. Then, V̇1 can be written as V̇1 = −k1z

2
1 +z1z2.

Step 2: Differentiating z2 gives ż2 = (a1x3 + a2x3x4 − Bx2 − TL)/J − α̇1.

Choose the Lyapunov function candidate as V2 = V1 +
Jz2

2

2
, and then the time derivative

of V2 is computed by

V̇2 = −k1z
2
1 + z2(a1x3 + f2) (5)

where f2(Z) = z1 + a2x3x4 − Bx2 − TL − Jα̇1 and Z = [x1, x2, x3, x4, xd, ẋd]. According
to the RBF neural network approximation property, for given ε2 > 0, there exists an
RBF neural network ϕT

2 P2(Z) such that f2(Z) = ϕT
2 P2(Z) + δ2(Z), where δ2(Z) is the

approximation error satisfying |δ2| ≤ ε2. Consequently, we can get

z2f2 ≤
1

2l22
z2
2∥ϕ2∥2P T

2 P2 +
1

2

(
l22 + z2

2 + ε2
2

)
(6)

Then, we choose α2 = 1
a1

(
−k2z2 − 1

2
z2 − 1

2l22
z2θ̂P

T
2 P2

)
, where θ̂ is the estimation of the

unknown constant θ which will be specified later and define z3 = x3 − α2, with l2 being
positive constant.

V̇2 ≤ −
2∑

i=1

kiz
2
i + a1z2z3 +

1

2l22
z2
2

(
∥ϕ2∥2 − θ̂

)
P T

2 P2 +
1

2

(
l22 + ε2

2

)
(7)

Step 3: Differentiating z3 obtains ż3 = b1x3 + b2x2x4 + b3x2 + b4uq − α̇2.

Choose the Lyapunov function candidate as V3 = V2 +
z2
3

2
, and the time derivative of

V3 is given by

V̇3 ≤ −
2∑

i=1

kiz
2
i +

1

2l22
z2
2

(
∥ϕ2∥2 − θ̂

)
P T

2 P2 +
1

2

(
l22 + ε2

2

)
+ z3(f3 + b4uq) (8)

where f3(Z) = b1x3 + b2x2x4 + b3x2 + a1z2 − α̇2 = ϕT
3 P3(Z) + δ3(Z). Similarly, for given

|δ3| ≤ ε3, ε3 > 0, we can obtain

z3f3 ≤
1

2l23
z2
3∥ϕ3∥2P T

3 P3 +
1

2

(
l23 + z2

3 + ε2
3

)
(9)

Then, construct the control law uq

uq =
1

b4

(
−k3z3 −

1

2
z3 −

1

2l23
z3θ̂P

T
3 P3

)
(10)

Furthermore, using Equations (8), (9) and (10), it can be verified easily that

V̇3 ≤ −
3∑

i=1

kiz
2
i + a1z2z3 +

3∑
i=2

1

2l2i
z2

i

(
∥ϕi∥2 − θ̂

)
P T

i Pi +
3∑

i=2

1

2

(
l2i + ε2

i

)
(11)

Step 4: At this step, we will construct the control law ud. Define z4 = x4 and choosing

V4 = V3 +
z2
4

2
, then V4 is computed by

V̇4 = V̇3 + z4ż4 = V̇3 + z4(f4 + c3ud) (12)
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where f4(Z) = c1x4 + c2x2x3 = ϕT
4 P4(Z) + δ4(Z). Similarly, for given |δ4| ≤ ε4, ε4 > 0,

we can get

z4f4 ≤
1

2l24
z2
4∥ϕ4∥2P T

4 P4 +
1

2

(
l24 + z2

4 + ε2
4

)
(13)

Construct the virtual control law ud as

ud =
1

c3

(
−k4z4 −

1

2
z4 −

1

2l24
z4θ̂P

T
4 P4

)
(14)

Defining θ = max {∥ϕ2∥2, ∥ϕ3∥2, ∥ϕ4∥2}, θ̃ = θ̂ − θ and using Equations (13) and (14),
one has

V̇4 ≤ −
4∑

i=1

kiz
2
i +

4∑
i=2

1

2l2i
z2

i

(
θ − θ̂

)
P T

i Pi +
4∑

i=2

1

2

(
l2i + ε2

i

)
(15)

Choose the Lyapunov function candidate as V = V4+
θ̃2

2r1
, where r1 is a positive constant.

By differentiating V , one has

V̇ ≤ −
4∑

i=1

kiz
2
i +

4∑
i=2

1

2

(
l2i + ε2

i

)
+

1

r1

θ̃

(
−

4∑
i=2

r1

2l2i
z2

i P
T
i Pi +

˙̂
θ

)
(16)

According to Equation (16), the corresponding adaptive law is chosen as follows:

˙̂
θ =

4∑
i=2

r1

2l2i
z2

i P
T
i Pi − m1θ̂ (17)

where m1 and li (i = 2, 3, 4) are positive constants.

Remark 3.1. Consider the system (1) and the reference signals xd. Then under the
action of the adaptive neural controllers (10), (14) and adaptive laws (17), the tracking
error of the closed-loop controlled system will converge to a small neighborhood of the
origin and all the closed-loop signals are bounded.

4. Stability Analysis of PMSM Position Control. Lyapunov stability theorem is
used to analyze stability of PMSM position system in this paper; substituting (17) into
(16), one has

V̇ ≤ −
4∑

i=1

kiz
2
i +

4∑
i=2

1

2

(
l2i + ε2

i

)
− m1

r1

θ̃θ̂ (18)

For the term −θ̃θ̂, one has −θ̃θ̂ ≤ −0.5θ̃2 +0.5θ. Consequently, by using these inequal-
ities, (18) can be rewritten in the following form

V̇ ≤ −
4∑

i=1

kiz
2
i +

4∑
i=2

1

2

(
l2i + ε2

i

)
+

m1

2r1

θ̃2 − m1

2r1

θ2 ≤ −aV + b (19)

where a = min
{
2k1,

2k2

J
, 2k3, 2k4,m1

}
and b =

∑4
i=2

1
2
(l2i + ε2

i ) + m1

2r1
θ2.

Then, (19) implies that

V (t) ≤
(

V (t0) −
b

a

)
e−a(t−t0) +

b

a
≤ V (t0) +

b

a
, ∀t ≥ t0 (20)

All zi (i=1, 2, 3, 4), θ belong to the compact set Ω=
{(

zi, θ̃
) ∣∣∣V ≤V (t0)+

b
a
, ∀t≥ t0

}
.

Namely, all the signals in the closed-loop system are bounded. From (20), we have

lim
t→∞

z2
1 ≤ 2b

a
(21)

By the definitions of a and b, we can set r1 large enough to get a small tracking error,
with li and εi small enough after giving the parameters ki and m1.
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5. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulations are performed to evaluate the performance of closed-loop system by using
Matlab/Simulink. The motor parameters of the PMSM are:

Rs = 0.68Ω, J = 0.003798kg · m2, np = 3, Ld = 0.00285H,
Lq = 0.00315H, Φ = 0.1245Wb

The RBF NNs are chosen in the following way. Then, an adaptive neural network
controller is used to control this permanent magnet synchronous motors. The control
parameters are chosen as follows:

k1 = 150, k2 = 60, k3 = 80, k4 = 100, r1 = 1.25, m1 = 0.005, l2 = l3 = l4 = 0.05

The simulation is carried out under the zero initial condition for the permanent magnet
synchronous motors. Give the reference signals:

xd = sin 2t, TL =

{
1.5N · m, 0 ≤ t ≤ 1
3N · m, t ≥ 1

Figure 1 shows the reference signal x1 and xd. Figure 2 shows the error curve. It can
be observed from Figure 1 and Figure 2 that the system can track the given reference
signal well. Figure 3 and Figure 4 show the trajectories of uq and ud. It can be seen that
the controllers are bounded. From the above simulation results, it is clearly seen that
the proposed controllers can track the reference signal quite well even under parameter
uncertainties and load torque disturbance.

Figure 1. Position curve Figure 2. Error curve

Figure 3. Voltage uq curve Figure 4. Voltage ud curve
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6. Conclusions. Based on backstepping technique, an adaptive neural network con-
troller method is designed to control permanent magnet synchronous motors. The pro-
posed controller is able to overcome the problem of “explosion of complexity” inherent
in the traditional backstepping design. And the designed controller guarantees that the
position tracking error can converge to a small neighborhood of the origin. Simulation
results testify its effectiveness in the PMSM drive system. In the future work, we will
focus on the practical application of the proposed control algorithm.
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