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Abstract. To improve the fault diagnosis precision of the subway auxiliary inverter, the
paper proposes a fault diagnosis model on the basis of radial basis function neural network
(RBFNN) and a hybrid optimization algorithm. Firstly, the paper adopts ensemble em-
pirical mode decomposition (EEMD) to process fault signal of auxiliary inverter. Then
extract effective frequency domain energy feature vectors by energy feature extraction.
Thirdly, the paper optimizes the parameters of RBFNN by means of the particle swarm
optimization (PSO) and simulated annealing (SA) algorithm. Finally, the fault feature
vectors will be applied in the optimized RBFNN to achieve fault recognition. The ex-
perimental results show that the proposed fault diagnosis model not only achieves better
classification effect and generalization ability, but also heightens the diagnosis accuracy
of the subway auxiliary inverter compared with PSO-RBFNN and RBFNN.
Keywords: Subway auxiliary inverter, Fault diagnosis, EEMD, Particle swarm opti-
mization, Simulated annealing

1. Introduction. Subway auxiliary inverter is the indispensable key electrical equipment
in urban rail train [1]. The serious faults of auxiliary inverter make such many facilities
work improperly as cooling fan, and air compressor, which will lead to subway train unable
to run normally [2]. However, the failure probability of auxiliary inverter is highest of all
train facilities [3]. So it is very necessary to develop a kind of intelligent fault diagnosis
system of subway auxiliary inverter.

RBF neural network with powerful learning ability and approaching capacity has been
used widely in the fault diagnosis [4]. However, it is difficult to accurately select the
appropriate node number of hidden layers and parameters, such as clustering center, basic
width and connective weight of RBFNN. Various solutions have been put forward to tackle
this problem, such as [5-8]. On the basis of the seniors’ research, the paper uses SAPSO
algorithm to optimize RBFNN, which not only successfully obtains the optimal structure
and parameters of RBFNN, but also overcomes the disadvantages of the premature and
low precision of the standard PSO.

The main text is mainly composed of the following four parts. According to the char-
acteristics of fault signal, the first part combines EEMD with energy feature extraction
method to process fault signals. In the second part, the paper details the theory of PSO,
SA and SAPSO algorithm. The third part simulates and analyses the advantages of
SAPSO-RBFNN algorithm. The last part is conclusion.
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2. Fault Feature Extraction Based on EEMD.

2.1. Fundamental of EEMD. Ensemble empirical mode decomposition (EEMD) was
put forward first by Huang and others, which is a good noise-assisted method for analyzing
nonlinear and nonstationary signal [9]. Aimed at the mode mixing problem of empirical
mode decomposition (EMD), EEMD adds the Gaussian white noise, whose frequency is
evenly distributed, into the original signal to ensure the continuity of the signal over all
scales. The decomposition process of EEMD is shown as follows.

1) Initialize the total execution times M of EMD and the amplitude coefficient η of white
noise; set the current decomposition times m = 1 and the number of intrinsic mode
functions (IMFs) n = 1.

2) Add random white noise nm(t) into the original signal x(t), and we will obtain the new
signal xm(t).

xm(t) = x(t) + ηnm(t) (1)

3) Set x′
m(t) = xm(t) and calculate all extreme points of x′

m(t). Adopt cubic spline func-
tion to fit the upper and lower envelopes through respectively interpolating the maxima
and minima.

4) Compute the mean of these two envelopes, symbolized by avg and calculate hm(t)
according to the following formula.

hm(t) = x′
m(t) − avg (2)

5) Judge whether hm(t) matches the conditions of IMF. If the conditions are not met, set
x′

m(t) = hm(t) and return to the step 3) until the conditions are met.
6) Set the n-th intrinsic mode function (IMF) cm,n(t) = hm(t), and calculate the residual

signal rm,(n+1)(t) = rm,n(t) − cm,(n+1)(t), where rm,1(t) = xm(t) − cm,1(t).
7) Judge whether terminal conditions of EMD are met. If not, set n = n + 1, xm(t) =

rm,n(t) and return to the step 3). Otherwise, execute the next step.
8) Judge whether m is equal to M ; if not, set m = m + 1 and return to the step 2) until

m is equal to M .
9) Calculate the average of all cm,i of each IMF to cancel the added white noise.

c̄i(t) =
1

M

M∑
m=1

cm,i(t) (3)

(i = 1, 2, . . . , n; m = 1, 2, . . . , M)

During the decomposition process of EEMD, the total execution times M of EMD and
the amplitude coefficient η of the white noise have strong influences on the decomposition
results of EEMD. So Wu and Huang suggested that if M was set to 100, the value of η
should be fetched from around 0.2 [10].

2.2. Energy feature extraction method. We obtain n IMFs by EEMD, and each IMF
represents a stationary signal of definite characteristic scale. Choose the first N IMFs,
which contain the main fault characteristics. Then calculate the total energy Ei of each
IMF to construct a feature vector T = [E1, E2, . . . , EN ]. Since the calculated results are
usually larger under normal circumstances, Ei needs to be dealt with normalization [11]
to get a new feature vector T ′.

T ′ = [E1/E, E2/E, . . . , EN/E], E =

√√√√( N∑
i=1

E2
i

)
(4)

The feature vector T ′ serves as the fault feature vector of subway auxiliary inverter.
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3. Designment of RBFNN Optimized by SAPSO.

3.1. Theory of PSO. Particle swarm optimization (PSO) is based on iteration proposed
by Kenndy and Eberhart in 1995 [12]. Each particle in the PSO algorithm is composed of
the position vector and velocity vector, where the position vector represents the solution
of optimization problem, the velocity vector decides the flight direction and speed of
particle and the particle performance is determined by the fitness of objective function.
In each iteration, seek the personal best solution Pbest and global best solution Gbest
by calculating and comparing the fitness values. In the end, the optimal solution of this
problem can be acquired by the cooperation and competition between particles.

Firstly, initialize a random group of m particles in an n-dimensional search space and
suppose the total number of iterations is kmax. The current position vector Xk

i and velocity
vector V k

i of the i-th particle are expressed as follows.

Xk
i =

[
xk

i1, . . . , x
k
id, . . . , x

k
in

]
(5)

V k
i =

[
vk

i1, . . . , v
k
id, . . . , v

k
in

]
where i is the number of particles, i = 1, 2, . . . , m; d is the dimension of search space,
d = 1, 2, . . . , n; k is the number of iterations, k = 1, 2, . . . , kmax.

Secondly, evaluate the fitness of each particle to find the current best position of the
i-th particle Pbestki and of the whole particle swarm Gbestk.

Pbestki =
[
pbestki1, . . . , pbest

k
id, . . . , pbest

k
in

]
(6)

Gbestk =
[
gbestk1, . . . , gbestkd, . . . , gbestkn

]
Then update the position and velocity of each particle according to the following equa-

tion.
vk+1

id = ωvk
id + c1r1

(
pbestkid − xk

id

)
+ c2r2

(
pbestkd − xk

id

)
(7)

xk+1
id = xk

id + βvk+1
id (8)

In the expressions, r1 and r2 are random numbers between 0 and 1, which are used
for maintaining the diversity of particle swarm [13]. c1 and c2 are learning factors, which
can adjust the individuality and sociality of particles [14]. To search for the true optimal
solution, the paper designs the value range of vk

id, vk
id ∈ [vmin, vmax]. β is the constraint

factor of velocity. ω is the connective weight used to keep the movement inertia of the
particle, and ω ∈ [ωmin, ωmax]. Use the expression (9) to calculate the value of ω in order
to balance the global searching ability with the local searching ability.

ω = ωmax − k
ωmax − ωmin

kmax

(9)

Finally, terminate the iterative process by terminal conditions we preset, such as the
maximal number of iterations kmax, the value range of fitness, etc.

3.2. Simulated annealing algorithm. Simulated annealing (SA) is an effective sto-
chastic searching optimization method proposed by Metropolis [15]. It is based on Me-
tropolis sampling criteria with the feature of mutational probability and enhances the
global optimization capability by simulating the physical process of solid annealing [16].
Suppose a solution for the optimization problem is i, the fitness of i is f(i) and the T
is the control parameter of temperature. The solution i will be updated to j after an
iteration, and f(j) is the fitness of j. Formula (10) represents the receiving probability pi

that the system solution is transferred from i to j.

pi =


1, f(j) > f(i)

exp

(
f(j) − f(i)

T

)
, f(j) ≤ f(i)

(10)
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The initial temperature T 0 of SA is represented as follows.

T 0 =
−f(Gbest0)

log(0.2)
(11)

The initial temperature is very high. During the process of iteration, the temperature T
will be gradually lowered due to the annealing rate λ until the stopping criteria are met.

The standard PSO is not fit for solving complicated multi-modal problems. The al-
gorithm is less sensitive to environmental change and the premature problem is more
likely to appear caused by particles aggregation, which may disenable us to get the actual
optimal solution [17]. To solve this problem, the paper introduces the idea of simulated
annealing into PSO and thus develops into a compound algorithm. During the iterative
process, SA receives optimal solution with the larger probability, and takes in deteriora-
tive solution with the smaller probability. Thereby, the new hybrid algorithm can increase
the diversity of particles, decline the probability of local convergence and greatly improve
convergent speed of PSO.

3.3. Optimization of RBFNN based on SAPSO. The paper selects RBFNN with
Gaussian basis function as the fault diagnosis model of subway auxiliary inverter. RBFNN
is a special artificial neural network with three-layer feedforward [18]. On the one hand,
it has many advantages including simple structure, efficient convergence, etc. On the
other hand, it has the disadvantage of uncertain structure and parameters in design [19].
Therefore, the paper uses K-means clustering algorithm to determine the structure of
RBFNN, and then employs the modified PSO algorithm by SA algorithm to constantly
optimize RBFNN in order to get the optimal parameters. The optimization process is
shown as follows.

1) Collect the fault samples of auxiliary inverter and determine the node number of input
layers and output layers of RBFNN.

2) Preset the parameters of RBFNN: process the samples by K-means clustering algo-
rithm to obtain h q-dimensional clustering center vectors. Accordingly, set the node
number of hidden layers to h and initialize the value range of clustering center matrix
C, basic width vector σ and connective weight matrix w of output layers.

3) Initialize the parameters of PSO: spatial dimension n, learning factors c1 and c2,
the total number of iterations kmax, the weight of velocity β, the maximum vmax

and minimum vmin of particle velocity, the maximum wmax and minimum wmin of
connective weight.
Initialize the parameters of SA: the control parameter of temperature T 0, the anneal-
ing rate λ.

4) Encode the structure of particle’s position as:

ck
11, c

k
12, . . . , c

k
1q, σ

k
1 , c

k
21, c

k
22, . . . , c

k
2q, σ

k
2 , . . . , c

k
h1, c

k
h2, . . . , c

k
hq, σ

k
h

Encode the structure of particle’s velocity as:

vk
1 , v

k
2 , . . . , v

k
p×(q+1)

5) Determine the fitness function: take the root mean squared error between predicted
output and true one as the fitness function of PSO. In the k-th iteration, if the number
of fault samples is N , the node number of output layers is M , the actual output is yk

ij

and predictive output is ŷk
ij, the current fitness function of PSO can be expressed as:

f =

√√√√1

2

N∑
j=1

M∑
i=1

(
yk

ij − ŷk
ij

)2
(12)
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6) Take the initial position of particle swarm as the initial personal best solution Pbest0.
Calculate the fitness of each particle to select the particle position of the smallest
fitness as the initial global best solution Gbest0.

7) Determine the receiving probability pi of the i-th particle as Formula (13). When
pi > rand(), set Gbestk = Pbestki . Otherwise, set Gbestk = Gbestk.

pi = exp

(
−

f
(
Pbestki

)
− f

(
Gbestk

)
T k

)
(13)

8) Update the position and velocity of particles according to Formulas (7) and (8).
9) Calculate the fitness of each particle and update Pbestk and Gbestk by comparing

their fitness values.
10) Update the control parameter of temperature T according to the following formula.

T k+1 = λ × T k (14)

11) Judge whether the iterative terminal conditions are met; if not, return to the step 7).
Otherwise, execute the next step.

12) Decode the global optimal solution to obtain the optimized clustering center matrix
C and basic width vector σ.

13) Calculate the connective weight matrix w of output layers by the means of least square
method. Calculate the output of RBFNN according to the three parameters.

We can see from the process described above that the paper combines K-means clus-
tering algorithm with SAPSO algorithm to train RBF neural network. This method not
only solves the problem which has been in RBF neural network, but it also improves
performance of RBF neural network, such as generalization ability and approximation
capability.

4. Simulation and Analysis. The experiment takes MATLAB 2010 as the program-
ming platform to achieve fault diagnosis of subway auxiliary inverter based on SAPSO-
RBFNN, PSO-RBFNN and RBFNN. Select four common types of faults and respectively
encode frequency variation as [1 0 0 0], impulsive transient as [0 1 0 0], voltage fluctuation
as [0 0 1 0] and transient oscillation as [0 0 0 1], which will be taken as the output of
RBFNN. Collect 32 groups of fault data and for each kind of fault, select 20 groups as
the training samples and the other 12 groups as the testing samples.

Firstly, decompose the fault samples by EEMD and get several IMFs and a residual
component for each group of fault samples. The decomposition results of impulsive tran-
sient are presented in Figure 1.

Figure 1. Decomposed results of impulsive transient signal
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Secondly, the paper chooses the first six IMFs, which contain the main fault features,
and process the six IMFs by energy feature extraction to obtain the normalized fault
feature vectors. Parts of fault feature vectors are shown in Table 1.

Thirdly, take the fault feature vectors as the input of RBFNN, and use the K-means
clustering algorithm to initialize the neural network. So we can determine the structure
of RBFNN is 6-7-4. During the optimization process of SAPSO, the spatial dimension is
30, the learning factors have the same value 1.79, the total number of iterations is 140,
the weight of velocity is 0.3, the value range of particle velocity is from −0.98 to 0.98,

Table 1. Parts of fault feature vectors

Fault type
Serial

E1 E2 E3 E4 E5 E6 Fault label
number

Frequency
1 0.3330 0.1009 0.0501 0.0360 0.4409 0.0318 1 0 0 0

variation
2 0.2972 0.0997 0.0544 0.0312 0.4941 0.0174 1 0 0 0
3 0.3148 0.0976 0.0399 0.0266 0.4968 0.0157 1 0 0 0

Impulsive
1 0.4843 0.1429 0.0634 0.0316 0.1541 0.0341 0 1 0 0

transient
2 0.5216 0.1576 0.0884 0.0402 0.1730 0.0086 0 1 0 0
3 0.5467 0.1593 0.0745 0.0288 0.1515 0.0290 0 1 0 0

Voltage
1 0.1038 0.0316 0.0146 0.2381 0.6045 0.0045 0 0 1 0

fluctuation
2 0.1179 0.0322 0.0170 0.1479 0.6776 0.0036 0 0 1 0
3 0.1330 0.0350 0.0152 0.1597 0.6496 0.0045 0 0 1 0

Transient
1 0.0151 0.0035 0.0186 0.9566 0.0043 0.0011 0 0 0 1

oscillation
2 0.0181 0.0042 0.0795 0.8955 0.0016 0.0009 0 0 0 1
3 0.0201 0.0053 0.0507 0.9203 0.0021 0.0008 0 0 0 1

Table 2. Diagnosis results of SAPSO-RBFNN, PSO-RBFNN and RBFNN

Model
Frequency Impulsive Voltage Transient Diagnosis
variation transient fluctuation oscillation accuracy

SAPSO-RBF 111/120 113/120 116/120 117/120 95.21%
PSO-RBF 104/120 108/120 103/120 113/120 89.17%

RBF 99/120 102/120 96/120 108/120 84.38%

Figure 2. Fitness curves of global extrema in optimization process
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the connective weight is in the range of (0.15, 0.95) and the annealing rate is 0.55. This
experiment tests ten times for each group and the diagnosis results of these three RBFNN
models are given in Table 2. The fitness curves of global extrema of SAPSO-RBFNN and
PSO-RBFNN during the optimization process are shown in Figure 2.

In Figure 2, the fitness of global extremum represents the error between predicted
output and true one. So compared with PSO-RBFNN, the error of SAPSO-RBFNN is
smaller and the convergent speed is faster. In Table 2, the diagnosis accuracy of SAPSO-
RBFNN reaches 95.21%, and the actual output of SAPSO-RBFNN comes closer to the
predicted one. Concluded from this experiment, SAPSO-RBF improves the diagnosis
accuracy and convergent speed of PSO-RBFNN.

5. Conclusion. Focused on the nonstationary and nonlinear characteristics of fault sig-
nal of subway auxiliary inverter, the paper puts forward a new fault diagnostic method
based on the simulated annealing particle swarm optimization algorithm and radial ba-
sis function neural network. This method combines the advantages of PSO with SA to
optimize the parameters of RBFNN for overcoming the premature convergence. The ex-
perimental results have proved the higher diagnosis accuracy and faster convergent speed
of SAPSO-RBFNN. However, the diagnosis accuracy of this method cannot reach 100
percent due to the complex structure of subway auxiliary inverter and the situation of
multiple faults occurring simultaneously. Therefore, the method needs to be amended
and improved in the future.
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