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Abstract. In this paper, the problem of how to sequentially select an auction for satis-
fying SUs’ different objectives under incomplete information in cognitive radio networks
has been studied. An intelligent secondary user will decide whether to attend an auction
or go to the next auction based on stopping rules. Dirichlet process is used to estimate
the winning probability (WP) of each auction by utilizing the historical data of winning
bids in each auction. The whole selection process does not need any prior information of
other SUs’ bidding strategies and WP of each auction. Three auction selection policies
with different purposes have been proposed and simulation results show that the proposed
auction selection policies are effective.
Keywords: Cognitive radio networks, Auction theory, Dirichlet process, Optimal stop-
ping theory

1. Introduction. In cognitive radio networks (CRNs) where wireless devices are allowed
to access idle licensed spectrum bands (also called spectrum opportunities in both time
domain and space domain) to improve the spectrum usage efficiency [1], the users who
have the licenses of spectrum bands are called primary users (PUs) and the users who can
utilize spectrum opportunities are described as secondary users (SUs). In order to improve
the utilization of spectrum opportunities further, an appropriate economic mechanism is
needed [2]. Auction is a very important market mechanism and suitable for allocating
the idle spectrum bands among SUs efficiently [3, 4]. There are many works which have
used auction models to research opportunistic spectrum allocation problems in CRNs.
In [5], authors have proposed an auction mechanism based on Dirichlet process (DP),
which enables fair and efficient allocating of spectral resources among SUs. From the
view of an individual SU, there may be many PUs who act as auctioneers to sell spectrum
opportunities at the same time. Under this situation, the problem of how to allocate
multiple PUs’ channels among SUs has been studied in [6] based on the concept of Nash
equilibrium. However, the situation where each SU will select an auction one by one
without any prior information of other SUs’ bidding strategies and WP of each auction
has not been considered in [6], which is a sequential selection problem. Luckily, some
work [7, 8, 9] has analyzed some sequential selection problems in CRNs based on optimal
stopping theory (OST). In [8], authors have proposed a simple channel sensing order
based on OST without a priori knowledge of primary user activities. The process of SUs
sensing the state of each primary channel will consume SUs’ time and energy. Therefore,
an optimal energy-efficient channel exploration strategy is very important for SUs in
practice, which has been investigated in [9] based on OST. Although these work has used
OST to research sequential selection problems in different CRNs models, previous studies
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have not tackled the problem of how to select an auction one by one under incomplete
information.

In this paper, we assume there is an intelligent SU (ISU) who is different from other
SUs in CRNs. The ISU can optimize its auction selection dynamically by utilizing the
available information produced by the previous auction rounds. However, other SUs who
are ordinary SUs (OSUs) do not change their own auction selection policies during the
whole auction process, which means OSUs will always attend the auction which has been
chosen at the first selection. This assumption is reasonable, because if there are many
SUs who attend auctions in each slot, each SU just cares about the previous winning bids
and WP of each auction in the next slot. Therefore, each SU can consider other SUs do
not change their selection strategies during the whole auction process. In other words,
the performance of the ISU is the key in this paper and OSUs just provide a dynamic
external environment for the ISU. In our proposed model, the auction selection process
for the ISU is modeled as a finite horizon optimal stopping problem. The remainder of
this paper is organized as follows. The system model is described in Section 2. In Section
3, the expression of WP has been given and three auction selection policies with different
purposes have been proposed. The simulation results are shown in Section 4. Finally,
Section 5 concludes this paper.

2. System Model. Consider a CRN with M PUs and N SUs as well as one SU base
station S in the same transmission area. All SUs are composed of two parts, namely,
one ISU and multiple OSUs. All PUs and SUs operate in the slot transmission structure
and the ISU knows the total number M of PUs. Each slot t is composed of the auction
selection time (ST) Mτ and the data transmission time (DT) (t−Mτ). Furthermore, we
assume Mτ ≪ t. An illustration of the ISU auction selection process is given in Figure
1. Each PU who acts as an auctioneer owns one primary channel and each SU who acts
as a bidder involves only one auction at a time. If any SU wants to use idle slot t of
primary channel m (m ∈ M) to send its data to the base station S, each SU must attend
the channel auction holden by PU m at the beginning of slot t. The winner who will be
decided at the moment Mτ in each auction will obtain DT (t − Mτ) of the channel m.
All auctioneers decide who are the winners at the moment Mτ for the synchronization of
CRNs. We also assume the total slots are T and all primary channels are always idle. In
each slot t, each PU will hold an auction to sell DT of its channel, where ISU can select
an auction with higher WP one by one only based on historical data and each OSU can
just attend a fixed auction through all slots. The transmission rates between SUs and
SU base station through each primary channel are assumed unchanged in each slot t. At
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Figure 1. An illustration of auction selection process
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the beginning of slot t, each OSU estimates the transmission rate Rt
n,S,m of the idle slot

by channel estimation technologies [5], and then sends its own true estimation value as
a bid [10] to the PU which has been fixed previously. The transmission rate Rt

n,S,m of

channel m estimated by SU n in slot t is Rt
n,S,m = W log2

(
1 + Pgt

n,S,m

/
σ2
)
, where W is

the channel bandwidth, P is the transmit power and σ2 is the thermal noise power, which
are the same to all SUs for the simplification of research. Note that gt

n,S,m which denotes
the channel gain between SUs and SU base station in slot t and changes over the time
but keeps unchanged during each slot (block-fading). The ISU not only estimates the
transmission rate Rt

n,S,m but also evaluates the WP using the historical data of winning
bids of auction m. Here, we choose the second price sealed auction to allocate idle slots
among SUs because this auction mechanism is incentive compatibility which means that
reporting the true private value is the weak dominant strategy for all bidders [10]. In the
auction held by PU m, there is Km(

∑
m Km = N) participators and any SU n with the

highest bid wins the DT of the channel in slot t, i.e.,

Ωt
n =

{
1, Rt

n,S,m > Rt
n′,S,m, ∀n′ ̸= n, n′, n ∈ Km

0, else.
(1)

Hence, the highest bid b
(1)
m,t = Rt

n,S,m and the secondary highest bid b
(2)
m,t = max(Rt

n′,S,m,
n′ ∈ Km \ n) in slot t.

3. Online Selection Policy. In this section, we firstly introduce the expression of WP
and then we will propose three online selection policies which satisfy different objectives

of ISU. Let b
(1)
m,1, b

(1)
m,2, . . . , b

(1)
m,t−1 denote the historical winning bids data of auction m in

previous (t−1) rounds. At the beginning of slot t, ISU estimates the channel transmission
rate Rt

n,S,m at first, and then it uses Rt
n,S,m to evaluate the WP based on the historical

winning bids data of the auction m. The expression of WP which is denoted by P t
m can

be written as follows [11],

P t
m

(
b
(1)
m,t ≤ Rt

n,S,m

∣∣∣b(1)
m,1, b

(1)
m,2, . . . , b

(1)
m,t−1

)
=

1

β + t − 1

(
βH

(
Rt

n,S,m

)
+

t−1∑
i=1

δ
b
(1)
m,i

(
Rt

n,S,m

))
,

(2)

where
∑t−1

i=1 δ
b
(1)
m,i

(
Rt

n,S,m

)
denotes the number of winning bids which are less than Rt

n,S,m.

The base distribution H is assumed to be the uniform distribution over
(
0, max b

(1)
m,t

)
,

where b
(1)
m,t denotes the any possible winning bid in the auction m [5]. Furthermore, in

fact, max b
(1)
m,t denotes the maximal capacity between SUs and SU base station S, which

is restricted by SUs’ hardware. In simulations of Section 4, we assume the maximal
capacity among the SUs is produced through all random channel conditions. Formula (2)
is deduced by the predictive distribution of DP [11]. If readers want to know more details
about DP, please refer to [11].

3.1. Sequential selection with finding the optimal auction. First, we propose a
simple selection policy with recall in which ISU can evaluate the WPs of all auctions and
always selects the optimal auction (the auction with maxm(P t

m)) to be present which is
also called Policy-1 in simulation results. Second, we propose a selection policy based
on the classical secretary problem [12] for the maximal probability of finding the optimal
auction, which is called sequential auction selection without recall (also called Policy-2 in
the simulation part). No recall means ISU is not allowed to choose the optimal auction
again if ISU loses the optimal auction in the past. When ISU evaluates P t

m of auction m
after having observed P t

1, P
t
2, . . . , P

t
m−1, it will make a decision to stop at auction m or go
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to evaluate auction m + 1. If ISU has evaluated the first m auctions, the WPs of the first
m auctions can be ranked from the maximal to the minimal. Here, we use X1, X2, . . . , XM

to denote the absolute ranks of WPs of M auctions, for example, X1 = 1 denotes the
maximal WP among M auctions. The relative rank of observed WPs is denoted as
ym = {the number of (P t

1, P
t
2, . . . , P

t
m−1 > P t

m)+1}, where y1 = 1 represents the maximal
WP among the first m auctions. We assume ym has a uniform distribution over the integers
from 1 to m. However, this assumption is not entirely reasonable, which will be showed
in simulation results. Note that an auction should be attended only if it is relatively
maximum among those already evaluated. The stopping rule in classical secretary problem
is called a threshold rule with threshold r, which means the decision-maker will reject the
first r−1 auctions and then accept the next relatively best auction. The following analyzed
technology is adopted from [12]. The probability pr of finding optimal auction using

stopping rule is pr =
∑M

k=r p (kth auction with maximal WP and selected) =
∑M

k=r
1
M

p

(the maximal of the first k − 1 appears before stage r) =
∑M

k=r
1
M

r−1
k−1

= r−1
M

∑M
k=r

1
k−1

,

where r−1
r−1

represents 1 if r = 1. The optimal rule ro is the value of r which maximizes pr.

Therefore, pr+1 ≤ pr if and only if r
M

∑M
r+1

1
k−1

≤ r−1
M

∑M
r

1
k−1

if and only if
∑M

r+1
1

k−1
≤ 1.

Therefore, the optimal rule ro = min
{

r ≥ 1 :
∑M

r+1
1

k−1
≤ 1
}

. For example, if M = 4,

the optimal rule ro = 2, which means ISU will not select the first auction and will select
the auction with a higher relative rank than the first one. The Policy-2 is that if ISU
can find an auction using the optimal rule ro, it will stop at the auction and sends its
bid to the auction; otherwise, it will stop at the last auction and sends its bid to the
last auction. The main objective of Policy-2 is to maximize the probability of finding the
optimal auction without recall.

3.2. Sequential selection with minimal expected absolute rank. As above men-
tioned, the ISU evaluates the WP of each auction one by one, and how to set an optimal
stopping rule for minimizing the expected absolute rank of WPs before stopping to attend
the auction is an interesting problem, which is meaningful for ISU who cares about the
cost of searching an auction. We assume there is a stopping policy which is the vector
r = {r1 ≤ r2 ≤ r3 . . . ≤ rM} (also called Policy-3 in the simulation part). In Policy-3,
the recall is also not allowed. After evaluating the first m auctions, if the relative rank
ym is less than or equal to rm, ISU will stop at the mth auction. Otherwise, ISU will
continue to evaluate the WP of the next auction. The following technical analyses for
determining r are adopted from [13]. If each permutation of the WPs M ! is equally likely,
the relative rank ym of the mth auction takes the value from 1 to m with equal probability
1/m. This assumption in our model is also not entirely reasonable but is effective. Define
an event wm: the event whose stopping does not occur at the mth auction or earlier,
and its probability is Q(m) = P̂ (wm). Hence, the probability of ISU stopping at the

mth auction is p̂ = P̂{wm−1, ym} = Q(m − 1) rm

m
. We can also get a recurrence formula

Q(m) = Q(m − 1)
(
1 − rm

m

)
.

Consider P̂ (ym = j|Xm = m̂) =
(

m̂−1
j−1

)(
M−m̂
m−j

)/(
M−1
m−1

)
. P̂ (Xm = m̂|ym = j) can be writ-

ten as P̂ (Xm = m̂|ym = j) = P̂ (Xm = m̂, ym = j) /P̂ (ym = j) =
(

m̂−1
j−1

)(
M−m̂
m−j

)/(
M
m

)
,

where P̂ (Xm = m̂, ym = j) = P̂ (Xm = m̂) P̂ (ym = j|Xm = m̂). The expected absolute

rank under condition ym = j is given as E(Xm|ym = j) =
∑M

m̂ m̂P̂ (Xm = m̂|ym = j) =
(M + 1/m + 1) j. Let Cm denote the expected absolute rank under the condition wm,
Cm = E(m̂|wm) and the recurrence formula is as follows,

Cm−1 =
1

Q(m − 1)

M∑
k=m

Q(k − 1)
1

k

M + 1

k + 1

rm∑
j=1

j
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=
(M + 1)rm(rm + 1)

2m(m + 1)
+
(
1 − rm

m

)
Cm. (3)

Our objective is to minimize the expected absolute rank C0. For achieving this goal, (3)
can be rewritten as follows,

Cm−1 = Cm +
1

m

rm∑
j=1

(
M + 1

m + 1
j − Cm

)
. (4)

For given Cm, we can determine rm to minimize Cm−1, which is based on the principle
of optimality in dynamic programming [13]. Therefore, rm can be chosen as the largest
integer j with satisfied M+1

m+1
j ≤ Cm and then,

rm =

⌊
m + 1

M + 1
Cm

⌋
. (5)

Hence, starting with rM = M , CM−1 = M+1
2

and using (4) and (5), the optimal rule r
can be deduced.

4. Simulation Results. In this section, we evaluate the performances of the proposed
selection policies in the CRN. We consider all SUs randomly distribute in a 500m × 500m
coverage area, and SU base station S locates in the center of the area. PUs are also in this
area and all SUs can send the bids to PUs. We assume each auction always has 10 OSUs
at a time. Hence, the total number of all SUs N = 10M +1. The range of M is from 2 to
20. The total times T = 10000 and all SUs adopt the channel model of Flat/Light tree
density proposed in [14]. P = 10−3 of all SUs and σ2 = 10−12W as well as W = 1Hz and
β = 0.5. For each M , the simulation will repeat 100 times.

In Figure 2, we compare the winning ratio of all auction selection policies. The winning
ratio is defined as the ratio between the total winning times of ISU and the total slots T .
In Policy-1, ISU always selects the optimal auction and sends its bid to the auctioneer.
Therefore, the winning ratio of Policy-1 should be the best policy among all policies.
The main goal of the Policy-2 is helping the ISU to find the optimal auction as much
as possible. However, this effort is not helpful to increase the winning ratio during the
whole selection process. Another fact in Figure 2 that the winning ratios of Policy-1
and Policy-3 increase with M increasing is discovered. This is because the probability of
finding an auction with a lower absolute rank under the condition of the same relative
rank will increase when M increases. However, this trend is not obvious in the curve of
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Figure 2. Winning ratio of three auction selection policies
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Figure 3. The ratio of finding the optimal auction
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Figure 4. Averaged number of auctions before stopping

Policy-2 in Figure 2. This is because, in Policy-2, if ISU cannot find the optimal auction,
it will have to stop at the last auction which will reduce the winning ratio of ISU.

In Figure 3, we define the ratio of finding the optimal auction as the ratio between
the number of finding the optimal auction and the total auction rounds T . The ISU
always selects the optimal auction using Policy-1, hence the ratio is 1 for all different
M . The Policy-2 outperforms the Policy-3 in the respect of finding the optimal auction.
We also show the ratio of Policy-2 and Policy-3 under the condition that any ordering
which is one permutation of M ! appears equally, which are Policy-2-T and Policy-3-T in
Figure 3. Policy-2-T and Policy-3-T outperform Policy-2 and Policy-3. This is because
the assumption of any ordering of M ! WPs being equally likely is not rigorously satisfied
but is also effective.

In Figure 4, the averaged numbers of auctions before ISU stopping at an auction using
different policies are demonstrated. The main objective of Policy-3 are minimizing the
expected absolute rank of WPs before ISU stopping. This effort is effective, which can be
seen from Figure 4. Minimizing the absolute rank of WPs is meaningful in practical CRNs
because the processes of estimating channel transmission rate and evaluating WP will cost
some resources. The Policy-3 can realize the tradeoff between obtaining auction winning
times and costing resources (e.g., time and energy). This is because the averaged numbers
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of auctions before ISU stopping using Policy-3 are less than using Policy-2 while the
winning ratio using Policy-3 is better than Policy-2 in Figure 2. We also show the averaged
numbers of auctions before ISU stopping before stopping for Policy-2 and Policy-3 under
the condition that any ordering which is one permutation of M ! appears equally, which
are Policy-2-T and Policy-3-T in Figure 4. The performances of Policy-2-T and Policy-3-
T are better than Policy-2 and Policy-3 in our model, which can reflect the assumption
of the orderings of WPs of M auctions being equal probability is not completely rational.
However, this assumption is helpful for ISU selecting a proper auction under incomplete
information. Policy-1 will evaluate WPs of all auctions each time, hence the averaged
numbers of auctions before ISU stopping are the same with M .

5. Conclusions. In this paper, we propose three sequential selection policies based on
OST. In the selection process, we have no need to assume any prior distribution informa-
tion of the winning bids of each auction and WP of each auction. From the simulation
results, although the assumption that each permutation of WPs is equally likely is not
entirely satisfied in our model, the proposed policies are effective in finding a proper auc-
tion for ISU. Since no prior information is needed in the auction selection process, our
proposed policies are suitable for practical CRNs. Furthermore, the multiple ISU model
will be considered in our future work based on game theory, which is a multi-agent model.
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