
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 4, April 2016 pp. 799–805

A SIMULATED ANNEALING BASED MULTISTART HEURISTIC
FOR THE SET COVERING PROBLEM

Lingxiao Xue1 and Geng Lin2,∗

1College of Computer and Information
Fujian Agriculture and Forestry University

No. 15, Shangxiadian Road, Cangshan District, Fuzhou 350002, P. R. China
xuelingxiao@fafu.edu.cn

2Department of Mathematics
Minjiang University

No. 200, Xiyuangong Road, Shangjie, Minhou, Fuzhou 350108, P. R. China
∗Corresponding author: lingeng413@163.com

Received October 2015; accepted January 2016

Abstract. The set covering problem is an NP-hard combinatorial optimization problem
with lots of applications. In this paper, we propose a simulated annealing based multistart
heuristic (SAMSH) for the set covering problem. The SAMSH uses an adaptive memory
mechanism to generate initial solutions. It guides the search toward promising region.
Then, a simulated annealing procedure is developed to improve the initial solutions. The
proposed algorithm is tested on a set of 45 benchmark instances from the literature. Ex-
perimental results and comparisons show that the proposed algorithm is able to get high
quality solutions.
Keywords: Set covering problem, Simulated annealing, Heuristic, Combinatorial opti-
mization

1. Introduction. The set covering problem (SCP) is a classical NP-hard problem of
combinatorial optimization [1]. It seeks to cover the rows of an m-row, n-column, zero-
one matrix (aij) by a subset of the columns at minimal cost. The SCP can be formulated
as follows [2]:

(SCP)


min f(x) =

∑
j∈J cjxj,

s.t.
∑

j∈J aijxj ≥ 1, for i ∈ I,

xj ∈ {0, 1}, for j ∈ J,

where J = {1, · · · , n}, and I = {1, · · · ,m} are the sets of columns and rows, respectively.
cj is the cost of column j. xj ∈ {0, 1} is the binary decision variable indicating if column
j is selected, or not.

As the wide practical applications of the SCP [6, 7], it has received a great deal of
attention in the past two decades. Several exact methods for the SCP, such as branch
and bound [8], and Gomory f -cuts [9], are developed to produce optimal solutions. Due
to the NP-hardness of the SCP, exact algorithms are difficult to produce high quality
solutions with a reasonable computational effort for problems of a moderate size. For
larger instances, many researches have been interested in applying heuristic methods
including genetic algorithm [2, 3], cultural algorithm [4], binary firefly algorithm [5], the
3-flip neighborhood local search method [10], electromagnetism metaheuristic [11], and
row weighting local search algorithm [12], to getting near optimal solutions.

Simulated annealing (SA) was introduced by Kirkpatrick et al. [13]. It is a local search
based heuristic capable of escaping from local optimum by accepting, with small probabil-
ity, worse solutions during the search process. SA has been successfully applied to a lot of
hard combinatorial optimization problems [13, 14, 15] to produce high quality solutions.

799

800 L. XUE AND G. LIN

Inspired by the potential application of SA to solve combinatorial optimization problems,
this paper proposes a simulated annealing based multistart heuristic (SAMSH) for solv-
ing the set covering problem. Extensive experiments are done on a set of 45 instances.
The computational results are compared with other existing heuristics, including genetic
algorithm, culture algorithm, and binary firefly algorithm. The comparisons show that
the SAMSH is very efficient.

This paper is organized as follows. The details of the proposed algorithm are given in
Section 2. Experimental results and comparisons are provided in Section 3. Finally, we
give our conclusions in Section 4.

2. The Multistart SA Algorithm for the SCP.

2.1. The SA procedure. In this section, a simulated annealing based multistart heuris-
tic is presented. The proposed algorithm follows the standard SA procedure which is based
on the definitions of fitness function and neighborhood. During the search process, we use
the exact penalty function g(x) to evaluate the quality of an obtained solution x. More
formally,

g(x) = f(x) + λ× ω(x), (1)

where λ > 0 is a penalty parameter, and

ω(x) =
∑
i∈I

max

(
1 −

∑
j∈J

aijxj, 0

)
is the number of rows which are not covered by x. Denote the set of neighboring solutions
of the current solution x as N(x). We define N(x) as the set of solutions obtained by
adding an unselected column or removing a selected column, i.e., each time one variable
is flipping. More formally,

N(x) =

{
y :
∑
j∈J

|xj − yj| ≤ 1

}
. (2)

Let x∗ and xbest be the current best solution found so far, and the best solution obtained
by an SA procedure, respectively. Our SA procedure starts from an initial solution x. The
pseudo code of this procedure is given in Algorithm 1. Initially, the current temperature
T is set to T0 (line 1). At each iteration, a neighborhood solution y in N(x) is selected by
flipping one variable. We choose a variable to flip according to its move value. The move
value v(j) of xj is defined as the fitness function value would decrease if xj is flipped,
which can be calculated by the following formula:

v(j) = g(x) − g(x1, · · · , 1 − xj, · · · , xn). (3)

The SA procedure calculates the move value v(j) of each variable. We can choose the
variable with the highest move value to flip directly. In order to diversify the search, a
restricted candidate list (RCL) is constructed by the variables with move values larger
than a threshold value. Specifically, let

RCL = {j ∈ J : v(j) ≥ α× vmax}, (4)

where vmax = max{v(j), j ∈ J}, and α ∈ [0, 1] is a parameter. α = 0 means that SA
procedure selects a random variable to flip; α = 1 means that SA procedure selects the
variable with the highest move value to flip. Then, a variable xt is randomly selected from
RCL, and is flipped. Let x′ be the obtained solution, i.e., x′ = (x1, · · · , 1−xt, · · · , xn). If
x′ is not worse than x, then it replaces x as the new current solution (line 9). Otherwise,
x′ is accepted with a small probability p.

The Boltzmann function is widely used to calculate the probability p. The research by
Tiwari et al. [17] has shown that using the Cauchy function to calculate the probability p

ICIC EXPRESS LETTERS, VOL.10, NO.4, 2016 801

has more opportunities to escape local optima. Our SA procedure uses Cauchy function
to calculate the probability p. More specifically, let △E = g(y)−g(x), and the probability
p is given by p = T

T 2+(△E)2
.

After the above flip operator performs M iterations, line 20 decreases the current tem-
perature T according to the rule T = γT , γ ∈ (0, 1). The search process is repeated until
xbest has not improved for Gno consecutive temperature decreases.

Algorithm 1 SA procedure

Input: an initial solution x, Gno.
Output: an improved solution xbest.
1: Initial T = T0, and xbest = x, G = 0.
2: while G ≤ Gno do
3: for Iteration = 1 to M do
4: Calculate the move value v(j), j ∈ J , according to (3).
5: Construct RCL according to (4).
6: Select a variable xt from RCL at random.
7: Let x′ = (x1, · · · , 1 − xt, · · · , xn).
8: if g(x′) < g(x) then
9: x = x′.

10: if g(x′) < g(xbest) then
11: xbest = x′, G = 0.
12: end if
13: else
14: Generate a number p ∈ (0, 1) at random.
15: if p < T

T 2+(g(x′)−g(x))2
then

16: Let x = x′.
17: end if
18: end if
19: end for
20: Let T = γT , G = G+ 1.
21: end while
22: if g(xbest) < g(x∗) then
23: x∗ = xbest.
24: end if

2.2. Adaptive memory mechanism. SA has been applied to solving many optimiza-
tion problems. It usually starts from a randomly generated solution in each iteration. To
enhance the performance of SA procedure, we use a memory mechanism in the construc-
tion of new starting solutions.

Suppose E = {x1, · · · , xs} is a set of elite solutions that has good solution quality. At
the beginning, we use the greedy heuristic [18] to generate s solutions to form E. Our
constructive procedure randomly selects two elite solutions from E, say x and y. A new
solution is generated as follows.

First, a partial solution z′ is generated. If xi = yi, the constructive procedure sets
z′i = xi; otherwise, let z′i = 0. Second, a greedy method is used to complete the partial
solution z′. A greedy function is defined to evaluate the benefit of adding an unselected
column into the current solution. We define the greedy function as follows: ψ(j) =

rj

cj
,

where rj is the number of uncovered rows which will be covered by column j. The
constructive procedure iteratively adds an unselected column with the largest value ψ(j)
to the current solution z′. The add operator is repeated until z′ is a feasible solution, i.e.,
all rows are covered by z′. Finally, a simple perturbation is used to diversify the search. µ

802 L. XUE AND G. LIN

selected columns and µ unselected columns are determined at random. The constructive
procedures swap these columns to form a new solution.

2.3. The algorithm. The proposed algorithm firstly uses the greedy heuristic [18] to
generate an elite solutions set E. At each generation, a new starting solution is constructed
by the constructive procedure, and is improved by the SA procedure (Algorithm 1).
Then the obtained solution z is used to update the elite solutions set E. Let xworst =
arg max{g(xi), xi ∈ E}. If g(z) < g(xworst), z is added to E, and xworst is deleted from
E. When the maximum number of generations maxgeneration is reached, then we stop
the proposed algorithm. The detailed algorithm is given in Algorithm 2.

Algorithm 2 SAMSH

Input: a matrix A = (aij).
Output: the best solution x∗ found so far.
1: Initial generation = 0.
2: Generate elite solution set E by the greedy heuristic.
3: Let x∗ = arg min{g(xi), xi ∈ E}.
4: while generation ≤ maxgeneration do
5: A new solution is generated by the constructive procedure, and is further improved

by the SA procedure (Algorithm 1). The obtained solution is denoted by z.
6: if g(z) < g(x∗) then
7: Let x∗ = z.
8: end if
9: Let xworst = arg max{g(xi), xi ∈ E}.

10: if g(z) < g(xworst) then
11: Let E = E ∪ {z} − {xworst}.
12: end if
13: generation = generation+ 1.
14: end while

3. Computational Results. The proposed algorithm SAMSH was coded in the C pro-
gramming language and the tests were carried out on an AMD processor with 3.4 GHz
clockpulse and 2.0 GB RAM under Windows XP. A collection of 45 benchmarks from OR
Library are used to test the proposed algorithm. It consists of 7 groups: SCP4, SCP5,
SCP6, SCPa, SCPb, SCPc, and SCPd.

Table 1. Settings of parameters

parameters description values
s number of elite solutions in E 10
λ penalty parameter in Equation (1) defined in (5)
α parameter in Equation (4) 0.7
T0 initial temperature 1.0
γ temperature updating parameter 0.9
Gno number of non-improving temperature decreases 10
M number of iterations in SA procedure 10

maxgeneration maximum generation 5000
µ swap magnitude 10

ICIC EXPRESS LETTERS, VOL.10, NO.4, 2016 803

Table 2. Computational results

instance optimum GA TGA CA
BFA SAMSH

fbest favg fbest favg

SCP4.1 429 432 429 448 429 433.5 429 431.4
SCP4.2 512 521 512 603 517 541.9 512 520.1
SCP4.3 516 526 520 540 519 532.36 516 523.6
SCP4.4 494 500 504 512 495 519.66 494 499.6
SCP4.5 512 518 512 520 514 524.16 512 526.8
SCP4.6 560 569 560 605 563 583.8 560 563.5
SCP4.7 430 443 432 447 430 435.56 430 432.3
SCP4.8 492 502 497 548 497 506.6 492 497.2
SCP4.9 641 662 641 671 655 675.36 641 654.6
SCP4.10 514 543 517 533 519 533.76 514 518.3
SCP5.1 253 274 255 309 257 268.53 253 258.0
SCP5.2 302 313 308 330 309 315 302 307.3
SCP5.3 226 229 228 232 229 239.66 226 226.0
SCP5.4 242 247 243 250 242 247.73 243 247.5
SCP5.5 211 212 212 218 211 218.83 211 214.9
SCP5.6 213 219 213 227 213 233.96 213 214.2
SCP5.7 293 308 293 310 298 308.66 293 299.6
SCP5.8 288 314 288 311 291 303.13 292 300.7
SCP5.9 279 283 280 292 284 298.6 279 297.0
SCP5.10 265 275 269 278 268 274.46 265 268.6
SCP6.1 138 144 144 155 138 148.46 143 143.0
SCP6.2 146 154 146 171 147 154.36 146 147.0
SCP6.3 145 148 148 176 147 151.53 145 145.0
SCP6.4 131 133 131 141 131 136.43 131 132.1
SCP6.5 161 177 163 186 164 175.53 161 162.0
SCPa.1 253 260 253 303 255 259.63 255 261.5
SCPa.2 252 270 265 272 259 268.6 252 265.3
SCPa.3 232 240 234 245 238 246.36 242 250.9
SCPa.4 234 255 235 251 235 246.2 235 251.5
SCPa.5 236 242 237 248 236 240.1 236 242.3
SCPb.1 69 70 69 87 71 78.93 69 69.0
SCPb.2 76 84 80 78 78 85.23 76 76.0
SCPb.3 80 82 80 85 80 84.43 80 80.0
SCPb.4 79 84 83 83 80 83.36 79 79.0
SCPb.5 72 73 72 75 72 75.7 72 72.0
SCPc.1 227 234 232 254 230 234.03 236 246.7
SCPc.2 219 227 223 225 223 231.23 227 239.2
SCPc.3 243 263 248 259 253 265.2 250 256.5
SCPc.4 219 224 224 240 225 238.36 224 229.2
SCPc.5 215 217 219 219 217 220.93 217 220.4
SCPd.1 60 63 62 68 60 31.33 60 60.0
SCPd.2 66 69 68 71 68 71.33 66 66.0
SCPd.3 72 77 73 80 75 78.1 72 72.1
SCPd.4 62 65 63 67 62 65.33 62 62.3
SCPd.5 61 69 64 66 63 65.26 61 61.3

804 L. XUE AND G. LIN

We use the exact penalty function to evaluate the quality of a solution. The penalty
parameter λ is problem independent. In our experiments, we set

λ =


30, SCP4,
12, SCP5, SCPa, SCPc,
8, SCP6,
3, SCPb, SCPd.

(5)

The parameter settings of SAMSH used in our experiments are listed in Table 1. These
parameter values were determined by a preliminary experiment.

We ran our proposed algorithm 10 times. Table 2 lists the best cost (fbest) and the av-
erage cost (favg) of our algorithm on the 45 benchmark instances. The column ‘optimum’
lists the optimal solution for each benchmark instance. In order to make comparison with
genetic algorithm (GA) [3], two stage genetic algorithm (TGA) [3], cultural algorithm
(CA) [4], and binary firefly algorithm (BFA) [5], we also list the computational results of
these algorithms in Table 2. Note that the GA and TGA stop when 50 generations are
reached. The data of GA and TGA is from [3]. The results of CA and BFA are taken
from [4] and [5], respectively.

From Table 2, one can see that the proposed algorithm is able to find the current best
known solutions on all tested instances. The average success rate of these instances is
68%, and the average CPU time for reaching the best results is about 231.525 seconds.
These results provide evidence of the efficacy of our proposed algorithm.

4. Conclusions. In this paper, we presented a simulated annealing based multistart
heuristic (SAMSH) for the set covering problem. The proposed algorithm uses an adap-
tive memory mechanism to generate good quality solutions. The newly generated solu-
tions is enhanced by using the SA procedure. It achieves a good compromise between
intensification and diversification in the search process. Computational experiments on 45
benchmark instances have demonstrated that our proposed algorithm is efficient. In fu-
ture work, we look forward to extending the proposed algorithm to other related NP-hard
problems.

Acknowledgment. This research was supported by the Science and Technology Project
of the Education Bureau of Fujian, China, under Grant JB13063.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, New York, 1979.

[2] J. E. Beasley and P. C. Chu, A genetic algorithm for the set covering problem, European Journal of
Operational Research, vol.94, no.2, pp.392-404, 1996.

[3] Z. Wu, T. Chen, H. Wang et al., Two stage genetic algorithm for set covering problem, Journal of
Chinese Computer System, vol.32, no.4, pp.732-737, 2011 (in Chinese).

[4] B. Crawford, R. Soto and E. Monfroy, Cultural algorithms for the set covering problem, Advances
in Swarm Intelligence, 2013.

[5] B. Crawford, R. Soto, M. Riquelme-Leiva et al., Modified binary firefly algorithms with different
transfer functions for solving set covering problems, in Software Engineering in Intelligent Systems,
Springer International Publishing, 2015.

[6] S. Ceria, P. Nobili and A. Sassano, A Lagrangian-based heuristics for large-scale set covering prob-
lems, Mathematical Programming, vol.81, no.2, pp.215-228, 1998.

[7] B. M. Smith, IMPACS – A bus crew scheduling system using integer programming, Mathematical
Programming, vol.42, no.1, pp.181-187, 1988.

[8] M. L. Fisher and P. Kedia, Optimal solutions of set covering/partitioning problems using dual
heuristics, Management Science, vol.36, no.6, pp.674-688, 1990.

[9] M. Ashouri, Z. Zali, S. R. Mousavi and M. R. Hashemi, New optimal solution to disjoint set K-
coverage for lifetime extension in wireless sensor networks, Wireless Sensor Systems, IET, vol.2,
no.1, pp.31-39, 2012.

ICIC EXPRESS LETTERS, VOL.10, NO.4, 2016 805

[10] M. Yagiura, M. Kishida and T. Ibaraki, A 3-flip neighborhood local search for the set covering
problem, European Journal of Operational Research, vol.172, no.2, pp.472-499, 2006.

[11] Z. Naji-Azimi, P. Toth and L. Galli, An electromagnetism metaheuristic for the unicost set covering
problem, European Journal of Operational Research, vol.205, no.2, pp.290-300, 2010.

[12] C. Gao, X. Yao, T. Weise and J. Li, An efficient local search heuristic with row weighting for the
unicost set covering problem, European Journal of Operational Research, vol.246, no.3, pp.750-761,
2015.

[13] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science, vol.220,
no.19, pp.671-680, 1983.

[14] V. F. Yu, S. W. Lin, W. Lee and C. J. Ting, A simulated annealing heuristic for the capacitated
location routing problem, Computers & Industrial Engineering, vol.58, no.2, pp.288-299, 2010.

[15] N. Jawahar, A. Gunasekaran and N. Balaji, A simulated annealing algorithm to the multi-period
fixed charge distribution problem associated with backorder and inventory, International Journal of
Production Research, vol.50, no.9, pp.2533-2554, 2012.

[16] A. R. Hedar and R. Ismail, Simulated annealing with stochastic local search for minimum dominating
set problem, International Journal of Machine Learning and Cybernetics, vol.3, no.2, pp.97-109,
2012.

[17] M. K. Tiwari, S. Kumar and R. Shankar, Solving part-type selection and operation allocation prob-
lems in an FMS: An approach using constraints-based fast simulated annealing algorithm, IEEE
Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol.36, no.6, pp.1170-1184,
2006.

[18] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of Operations Research,
vol.4, no.3, pp.233-235, 1979.

