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Abstract. This paper investigates state estimation problem for linear continuous time-
invariant systems over a stationary memoryless uncertain digital channel without data
dropout and time delay. In particular, the case with information limitation is examined.
A sufficient condition on zero-error channel capacity for asymptotic observability is de-
rived. It is shown that, there exists an encoder, decoder, and estimator such that the
system is asymptotically observable if zero-error channel capacity is larger than a low
bound given in our results. An illustrative example is given to demonstrate the effective-
ness of the lower bound given.
Keywords: State estimation, Information limitation, Asymptotic observability, Net-
worked control systems

1. Introduction. The problem of state estimation for networked control systems has
received an increasing interest in recent years [1,2]. This problem arises when the in-
formation of the plant states is transmitted over a band-limited communication channel.
It becomes an active research area motivated by many engineering applications, such as
industrial automation, sensor networks, vehicle systems, and aerospace industry.

A high-water mark in the study of quantized feedback using data rate limited feedback
channels is known as the data rate theorem. The intuitively appealing result was proved
in [3-5], indicating that it quantifies a fundamental relationship between unstable physical
systems and the rate at which information must be processed in order to stably control
them. When the feedback channel capacity is near the data rate limit, control designs
typically exhibit chaotic instabilities. This result was generalized to different notions of
stabilization and system models, and was also extended to multi-dimensional systems [6-
8]. Control under communication constraints inevitably suffers signal transmission delay,
data packet dropout and measurement quantization which might be potential sources of
instability and poor performance of control systems [9-11].

In [12], a quantized-observer based encoding-decoding scheme was designed, which in-
tegrated the state observation with encoding-decoding. [13] addressed some of the chal-
lenging issues on moving horizon state estimation for networked control systems in the
presence of multiple packet dropouts. It was shown in [14] that maxmin information was
used to derive tight conditions for uniformly estimating the state of a linear time-invariant
system over a stationary memoryless uncertain digital channel without channel feedback.
[15] investigated the quantized feedback control problem for stochastic time-invariant lin-
ear control systems. A predictive control policy under data-rate constraints was proposed
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to stabilize the unstable plant in the mean square sense. [16] addressed LQ (linear qua-
dratic) control of MIMO (multi-input multi-output), discrete-time linear systems, and
gave the inherent tradeoffs between LQ cost and data rates.

Although there are many results on control under information limitation in the litera-
ture, the difference is that we restrict attention to the stationary memoryless uncertain
digital channel, and give a lower bound on zero-error capacity for asymptotic observability.
This paper is concerned with state estimation problem for networked control systems over
a stationary memoryless uncertain digital channel without data dropout and time delay.
The zero-error capacity of such a channel should be large enough to send the transmission
of the state information without error. Clearly, zero-error capacity has important effect
on asymptotic observability of the system. Our purpose here is to derive the condition on
zero-error channel capacity for asymptotic observability. Our work here differs in that we
present a lower bound on zero-error capacity for asymptotic observability of networked
control systems.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 deals with state estimation problem under information limitation;
The results of numerical simulation are presented in Section 4; Conclusions are stated in
Section 5.

2. Problem Formulation. Consider the following linear continuous time-invariant sys-
tem

Ẋ(t) = AX(t),
Y (t) = CX(t)

(1)

where X(t) ∈ Rn is the state process, and Y (t) ∈ Rm is the measured output, assumed
to be Lebesgue-measurable. A and C are known constant matrices with appropriate
dimensions. The initial state X(0) is an uncertain variable with range Ω ⊆ Bl(0). Here,
let Bl(z) denote the l-ball{x : ∥x − z∥ ≤ l} centered at z, where ∥ · ∥ denotes either the
maximum norm on a finite-dimensional real vector space or the matrix norm it induces.

Figure 1. Networked control systems

Assume that there exists a real orthogonal matrix H ∈ Rn×n that diagonalizes A.
Namely, A = H ′ΛH with Λ := diag[λ1, · · · , λn]. Clearly, λi is the ith eigenvalue of
system matrix A. Here, we choose to examine system (1) in this form because it makes
our results most transparent.

Then, after a coordinate transformation, system (1) may be rewritten as

Ẋc(t) = ΛXc(t),
Y (t) = CH ′Xc(t)

where we define Xc(t) := HX(t).
Furthermore, we examine the case where the sensors and the controller are geographi-

cally separated and connected by a stationary memoryless uncertain digital channel with-
out data dropout and time delay. The case involves digital control with a uniform sampling
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interval h. Then, the corresponding discrete-time system is given by

X(k + 1) = GX(k),
Y (k) = FX(k)

(2)

where we have X(k) := Xc(kh), Y (k) := Y (kh), G = eΛh, and F = CH ′.
The information of the measured output is transmitted over the communication channel.

Then, the measured output Y (k) is encoded via an operator Φ. The encoder at time k is
defined as

Φ : E(k) = Φ[k, Y (0), Y (1), · · · , Y (k)]. (3)

Each symbol E(k) is then sent to the decoder over the channel without feedback. Let
D(k) denote the received symbol. The decoder at time k is defined as

Ψ : D(k) = Ψ[k,E(0), E(1), · · · , E(k)]. (4)

Let X̂(k) denote the state estimate. The estimator at time k is defined as

Θ : X̂(k) = Θ[k, D(0), D(1), · · · , D(k)]. (5)

Here, the prediction error at time k is defined as

Z(k) := X(k) − X̂(k).

System (1) is surely asymptotically observable if there exists an encoder (3), decoder
(4) and estimator (5) such that

lim supk→∞ ∥Z(k)∥ → 0.

We know that, zero-error capacity has important effect on observability of system (1).
Namely, zero-error capacity must be larger than a lower bound such that there exists an
encoder (3), decoder (4) and estimator (5) to achieve asymptotic observability of system
(1). Thus, the main task here is to derive the condition on zero-error capacity C0 for
asymptotic observability of system (1).

3. State Estimation under Information Limitation. In this section, we examine the
state estimation problem for linear time-invariant systems over a stationary memoryless
uncertain digital channel without data dropout and time delay. Here, we address asymp-
totic observability of system (1) under information limitation. Clearly, zero-error capacity
has important effect on observability. Our main task here is to present a lower bound on
zero-error capacity for observability, and design an encoder, decoder, and estimator on
the basis of such a lower bound.

The main result of this section is given below.

Theorem 3.1. Consider system (1) with uncertain initial state X(0) and plant outputs
that are encoded by the encoder (3), decoded by the decoder (4), and estimated by the
estimator (5) via a stationary memoryless uncertain digital channel without data dropout
and time delay. Let C0 ≥ 0 denote zero-error capacity of such a channel. Then, there
exists an encoder, decoder, and estimator such that system (1) is asymptotically observable
if zero-error capacity C0 satisfies the following condition:

C0 >
∑

i∈Ξ λi log e (bits/s) (6)

with Ξ := {i ∈ [1, n] : λi ≥ 1}.

Proof: Notice that, system (1) is asymptotically observable if ∀ε > 0, ∀X(0) ∈ Bl(0),
∃T (ε, l) > 0 such that

∥Z(k)∥ ∈ Bε(0)

holds as k > T (ε, l). This means that

lim supk→∞ ∥Z(k)∥ → 0
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holds. Then, zero-error channel capacity must be large enough to ensure that the code-
words can be transmitted over such a channel without error.

In order to obtain the lower bound on zero-error channel capacity for asymptotic ob-
servability of system (1), we may compute the number of regions of diameter less than
2ε, which takes to cover the nonempty l-ball Bl(0) of the plant states.

Then, we define

α ∈
(

0, 1 − max
i

1

eλih

)
with i ∈ Ξ. The interval [−l, l] on the ith axis is divided into di equal subintervals, for
each i ∈ Ξ. Then, we have

di =
⌈[

(1 + α)eλih
]k

⌉
(7)

with i ∈ Ξ. Here, we define

⌈x⌉ := min{z ∈ Z : z > x}.

Let I∗ [X (0) , D (0) , D (1) , · · · , D (k)] denote the maxmin information between D(0),
D(1), · · · , D(k) and X(0). The definition of the maxmin information is given by [14].
Then, it follows from [14] that,

2I∗[X(0),D(0),D(1),··· ,D(k)] ≥
∏
i∈Ξ

di. (8)

Substitute (7) into (8), and we get

2I∗[X(0),D(0),D(1),··· ,D(k)] ≥
∏
i∈Ξ

⌈[
(1 + α)eλih

]k
⌉

.

Notice that ⌈[
(1 + α)eλih

]k
⌉
≥

[
(1 + α)eλih

]k
.

Then, we have

2I∗[X(0),D(0),D(1),··· ,D(k)] ≥
∏
i∈Ξ

[
(1 + α)eλih

]k
.

Take logarithms, and we may obtain

I∗[X(0), D(0), D(1), · · · , D(k)] ≥ log
∏
i∈Ξ

[
(1 + α)eλih

]k
. (9)

Furthermore, it follows from [14] that

k · C0 > I∗[X(0), D(0), D(1), · · · , D(k)]. (10)

It follows from (9) and (10) that

C0 >
1

k
log

∏
i∈Ξ

[
(1 + α)eλih

]k
=

∑
i∈Ξ

log
[
(1 + α)eλih

]
.

Notice that α may be arbitrarily small. Then, letting α → 0 yields

C0 >
∑

i∈Ξ log eλih =
∑

i∈Ξ λih log e =
∑

i∈Ξ λi log e (bits/s).

Thus, the proof is complete. �
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4. Numerical Example. In this section, we give a numerical example to illustrate the
effectiveness of the lower bound on zero-error capacity given in our results. We consider
a class of networked control problems which arises in the coordinated motion control of
unmanned air vehicles (UAVs), where the plant states evolve in discrete-time according
to

X(k + 1) =

 3.246 2.512 −1.462
0.265 −2.512 4.561
0.231 6.321 8.431

X(k).

Let X(0) = [10 20 −10]′. Here, we employ the encoder (3), decoder (4), and estimator
(5) subject to the condition on zero-error capacity presented in Theorem 3.1. The corre-
sponding simulation is given in Figure 2. It is shown that the system is asymptotically
observable. However, if zero-error capacity is too low, it leads to instability of the sys-
tem. The corresponding simulation is given in Figure 3. It is shown in the simulation
results that zero-error capacity has important effects on observability of networked control
systems.
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Figure 2. The plant state responses with zero-error capacity C = 18 bits/s
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Figure 3. The plant state responses with zero-error capacity C = 11 bits/s
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5. Conclusions. In this paper, we examined state estimation for networked control sys-
tems, and considered the case with information limitation. Our results state that, zero-
error channel capacity has important effect on asymptotic observability of the system. A
lower bound on zero-error channel capacity was derived to ensure that there exists an
encoder, decoder, and estimator such that the system is asymptotically observable. The
simulation results have illustrated the effectiveness of the lower bound given. The study
of nonlinear system with limited information will be our future work.
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