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Abstract. Considering the demand from customers may make changes to the origi-
nal order contract upon arrival of the vehicle at the location of each customer, this pa-
per focuses on the vehicle routing problem with dynamic demands and time windows
(VRP DDTW). The mixed-integer mathematical optimization model is established to
minimize the total cost. Since the VRP is classified as an NP-hard problem, an improved
Partheno-genetic algorithm incorporating heuristic algorithm (IPGA HA) is presented to
determine the optimal routing policy. Numerical example shows that the proposed algo-
rithm achieves promising results by comparing with genetic algorithm.
Keywords: Vehicle routing problem, Demand, Time windows, Genetic algorithm, Heu-
ristic algorithm

1. Introduction. The classical VRP is first introduced by Dantzig and Ramser [1] in
1959, which aims to seek the optimal routing policy by minimizing the cost and deliver
goods from a depot to geographically dispersed customers having deterministic demands
[2]. All vehicles with limited capacity begin and end the route at the depot, and each cus-
tomer is serviced only once, by only one vehicle. Numerous studies have been developed;
see a recent overview [3] in which the available exact and heuristic algorithms for the VRP
are provided. However, there are some ideal assumptions in the VRP which restrict the
practical application in the real-life cases. Many efforts have been made for the variations
of the VRP by relaxing assumptions or incorporating more constraints [4,5]. Among the
most common are multi-depot VRP [6,7], capacitated VRP [6,8], stochastic demands [8],
time windows [9,10], split deliveries [10] and pickup and delivery [7,9], which are closer to
the practical situations.

In the studies for the VRP with stochastic demands (VRPSD), it is assumed that
customers’ demand follows a known or unknown probability distribution and the actual
demand is known only when the vehicle arrives at the customer location [8]. It is the
main difference from the capacitated VRP where the demand is known in advance. It is,
however, difficult to estimate the specific distribution parameters for VRPSD since the
field data is unavailable. Each location is allowed to be visited by vehicles within a specific
time window referring to the VRP with (hard or soft) time windows (VRPTW), which
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will be considered in our following work. If the vehicle reaches the location before the
lower limit of the time window, it has to wait; otherwise the service should be immediate.
Nevertheless, a penalty cost is usually imposed for the vehicle once the arrival time is
beyond the deadline of the time window.

This paper is motivated by a practical problem, where the initial demand and accep-
tance time for service (time window) are known according to the contract signed by the
central depot and the customer. Based on the contract items for demands and time
windows, the loaded and capacitated vehicles leave the central depot and begin to visit
customers. However, customers may increase or decrease the order when the vehicle ar-
rives to them; a new order even occurs. The time window restriction is shared by the
original demand for all customers due to the contract requirements, but it is free of con-
straint for the demands caused by the increased and new order. The assumption that one
customer is only visited once is unrealizable when the demand exceeds heavily the vehicle
capacity, so the demand has to be split into several small-scale orders and delivered more
than once.

It is difficult to find the exact solution for the VRP variations due to that it is a
NP-hard problem and is computationally very demanding. Many algorithms have been
wildly proposed to approximately optimize the VRP and have achieved excellent perfor-
mance [11]; for example, Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithm
(GA), Evolution Strategies (ES), Particle Swarm Optimization (PSO), Ant Colony Op-
timization (ACO). The hybrid algorithm is also presented to optimize the best route for
vehicles, please refer to [11]. The most common meta-heuristics used to NP-hard is GA
because of its global search strategy, especially Partheno-Genetic Algorithm (PGA) [12].
Since there is no crossover operator in PGA, it avoids the invalid chromosome after the
crossover operator in GA. However, the determination of an initial solution for PGA has
an essential role on searching for the optimization solution and the search effectiveness.
In our following proposed algorithm, heuristic algorithm is developed to determine the
initial population for GA and then apply genetic algorithm to them while performing an
optimization search.

The main contributions of this paper different from the previous work are: (1) the de-
mand of the original order for customers may be changed once the vehicle arrivals to them,
referring to the dynamic demand; (2) a mathematic optimization model for VRP DDTW
is constructed to minimize the total cost; (3) an improved PGA incorporating heuristic
algorithm is presented to find the optimal routes for vehicles. The remaining outline of
this work is organized as follows: Section 2 introduces the modeling assumptions and the
mathematic model; in Section 3, the algorithm IPGA HA is developed for solving the
proposed model of Section 2; this is followed by computational results and comparison in
Section 4; Section 5 concludes the paper.

2. Problem Description and Mathematical Model of VRP DDTW.

2.1. Problem assumptions. The VRP DDTW is defined as an undirected graph G =
(V, E) with vertex set V = {0, 1, . . . , N}, where 0 denotes the depot and the other vertices
denote customers, and E is the edge set. The VRP DDTW aims to create efficient vehicle
routes, which will satisfy the demand of all customers. Initially, a set of identical vehicles
with limited capacity leave the central depot and begin to service customers with time
windows in terms of the contract. However, the demand may be randomly changed upon
arrival of the vehicle at the location of each customer. In the following, we first present
some modeling assumptions and notations.

(1) There is only one central depot “0”.
(2) A single type of products at the depot is delivered by vehicles and ordered by cus-

tomers.
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(3) The vehicles are identical with the maximum capacity Q (Q > 0) and fixed cost c.
(4) The duration of a vehicle from departing from depot to ending at depot after going

through some customers is defined as a cycle.
(5) Split deliveries are allowed in which each customer may be visited by several vehicles,

and this means that a route may be subject to multiple cycles in the subsequent
modeling.

(6) The initial demand of each customer i, i ∈ V −{0} is di (di ≥ 0) with time windows
[Ei, Li], where Ei is an earliest arrival time and Li is a latest arrival time.

(7) Upon the first arrival of the vehicle at the location of each customer i, the random
demand d′

i occurs in which d′
i > 0 (< 0) corresponds to the increased (decreased)

order, respectively. Additionally, the demand of customer i keeps unchanged if
d′

i = 0.
(8) There is no limit of time windows for the demand caused by the changed order.
(9) A vehicle has to wait until the lower limit of the time window Ei if the arrival time at

the customer location is earlier than Ei, and the penalty cost per unit time resulting
from waiting for service is cp. However, an immediate service is provided for the
customer if the arrival time of a vehicle at the customer location falls into the time
windows [Ei, Li] or is larger than the upper limit Li. Exceptionally, vehicles arriving
later than the latest arrival time Li are also penalized with the cost per unit time cq

(cq > cp).
(10) There are enough products in the depot providing customers, i.e., no shortage.

The following notations will be used in the proposed model and algorithm.
K (k = 1, 2, . . . , K), the total number of vehicles; Lk, the cycle number of a route for

vehicle k; fi, service time at customer i; tij (i, j ∈ E), travel time between i and j with
the travel cost per unit time ct; tak

il, arrival time of the lth cycle for vehicle k at customer
i; tdk

il, departure time of the lth cycle for vehicle k from customer i; xk
ijl, referring to a

binary variable which takes the value 1 if and only if (i, j) belong to one of the routes of
the lth cycle for vehicle k; and the associated discharging amount is bk

jl at customer j; Qk
il

is the remaining amount after the discharging of the vehicle k in the lth cycle at customer
i.

2.2. Mathematical formulation. The VRP DDTW can be described as follows:

Minimize: Ctotal = cK +
K∑

k=1

Lk∑
l=1

N∑
i=0

N∑
j=0

xk
ijl · tij · ct

+
K∑

k=1

Lk∑
l=1

N∑
j=1

[
cp

(
Ej − tak

jl

)
+ cq

(
tak

jl − Lj

)] (1)

Subject to
N∑

j=1

xk
0jl = 1,

N∑
j=1

xk
j0l = 1 (2)

N∑
i=0(i̸=j)

xk
ijl = 1 (3)

N∑
i=0

xk
ihl −

N∑
j=0

xk
hjl = 0, h = {1, 2, . . . , N} (4)

N∑
i=0

N∑
j=1

xk
ijl · bk

jl ≤ Q (5)
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K∑
k=1

Lk∑
l=1

N∑
i=0

xk
ijl · bk

jl = dj + d′
j (6)

tak
jl + fj ≤

N∑
j∈V (i̸=j)

xk
ijl · tdk

ijl (7)

Function (1) is designed to minimize the total cost by summing up the fixed cost of all
vehicles, the travelling cost due to delivery, and the penalty cost. Constraint (2) assures
vehicles depart and return to the depot “0” in a cycle; Constraint (3) guarantees that
each customer is visited only once by one vehicle in a cycle; Constraint (4) ensures the
sequence of a route i → h → j; Constraint (5) restricts the load on a vehicle; Constraint
(6) states that the demand of each customer is satisfied; Constraint (7) defines the timing
constraint, i.e., for a cycle of each vehicle, the departure time from customer j cannot be
smaller than the time sum of the arrival time at j and the service time.

3. Improved Partheno-Genetic Algorithm Incorporating Heuristic Algorithm.
In this section, we design a hybrid algorithm IPGA HA in which an initial population
for VRP DDTW is created by heuristic algorithm, based on which the Partheno-genetic
algorithm is used to search the optimal solution. The procedure of the proposed algorithm
IPGA HA is shown in Algorithm 1.

Algorithm 1:
Input: Population size M , probability of recombination operator Pr, stopping criteria
Output: Solution to VRP DDTW, i.e., the optimal routing policy
Step 1: Encoding of chromosomes

Using natural number coding rule.
Step 2: Generation of the initial population with HA (See the following Algorithm 2)
Step 3: Construct the fitness function

The fitness function can be expressed as f = 1/(1 + Ctotal + G), where G is a very
large integer.

Step 4: While (stopping criteria not met) do
• Generate a new population with size M

′
by recombination operator with prob-

ability Pr;
Single point conversion operator is performed on gene over a cycle; please refer
to:

• Evaluate the fitness of each individual;
• Select individuals through some selection scheme.

The tournament selection strategy is used for the selection of individuals for devel-
opment of next generation.
End;

In the above Algorithm 1, an initial population is generated using HA. The pseudo
code is presented as Algorithm 2.

4. Numerical Example. The parameters in model (1) are assumed as Q = 50, c = 1000,
ct = 20, cp = 25 and cq = 40. The customer information is shown in Table 1, where
the travel time tij between i and j is also given. The proposed algorithm is performed
using Matlab, where the algorithm parameters are set in Table 2. Depending on these
parameters, we obtain the optimal route policy using the proposed algorithm IPGA HA,
as shown in Table 3. The changed demand for customers is determined during the search,
d

′
1 = 25, d

′
2 = −20, d

′
3 = 45, d

′
4 = 0, d

′
5 = −5, d

′
6 = 0, d

′
7 = 80, d

′
8 = −8.
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Algorithm 2:
Step 1: Initialize parameters c, ct, cp, cq, di, [Ei, Li], K = 4, l = 1, si = 0, d

′
i = 0;

Step 2: Each vehicle k departs from the central depot, and record tdk
il;

Step 3: Vehicle k (k = 1, . . ., K) randomly visits a customer j with dj > 0 or d
′
j > 0, and

record tak
jl = tlkil + tij ;

If sj = 0 % Customer j is not yet visited by vehicles such that the demand may
be changed.
Generate a random number r in (0, 0.9] and there are three scenarios that should
be considered as follows.
(1) If r ∈ (0, 0.3], the demand increases with d

′
j > 0 and update sj = 1; (2) if

r ∈ (0.3, 0.6], the demand decreases with d
′
j < 0, abs(d

′
j) ≤ dj and update sj = 1;

(3) otherwise, keep the demand unchanged.
Go to Step 4;
Else go to Step 4
End;

Step 4: Calculate the discharging amount bk
jl.

Scenario 1: d′j > 0

If Qk
il > dj and d′j > 0 then bk

jl = dj + min
{

d′j , Q
k
il − dj

}
Update dj = 0, d′j = max

{
0, d′j −

(
Qk

il − dj

)}
, Qk

jl = Qk
il − bk

jl,

xk
ijl = 1

End;
If Qk

il ≤ dj and d′j > 0 then bk
jl = Qk

il Update dj = dj − Qk
il,

Qk
jl = 0, xk

ijl = 1
End;
Scenario 2: d

′
j <= 0

If Qk
il > dj then bk

jl = dj , update dj = 0, Qk
jl = Qk

il − bk
jl, xk

ijl = 1
End;
If Qk

il ≤ dj then bk
jl = Qk

il, update dj = dj − Qk
il, Qk

jl = 0, xk
ijl = 1

End;

Considering time win-
dows:
1) tak

jl < Ej

Uploading until Ej

tdk
jl = Ei + fj

2) tak
jl ∈ [Ej , Lj ] or > Lj

Uploading immediately
tdk

jl = tak
jl + fj

Step 5: Continue to deliver? Return to the central depot?
If

∑N
i=1 (di + d′i) = 0 % The demand of all customers have been delivered.

Vehicle k returns to the depot and ends delivery; record Lk = l and xk
j0Lk

= 1;
Else % Goods for several customers are still being in demand.

If Qk
jl = 0 % Empty vehicle; vehicle k returns to the depot, and ends the lth cycle;

loading.
xk

j0l = 1, update l = l + 1, Qk
0l = min

{
Q,

∑N
i=1 (di + d′i)

}
; Go to Step 2;

Else Go to Step 2;
End;

End;
Step 6: Output the route of all vehicles according to Lk, xk

ijl, i.e., an initial solution.
Step 7: End this procedure until M individuals are generated.

Taking the route of vehicle 2 as example, the “0 → 2 → 1 → 0’→ 8 → 6 → 7 → 0”
implies that there are two cycles, 0 → 2 → 1 → 0’ and 0’→ 8 → 6 → 7 → 0. Also, the
discharging amount at customers 2, 1, 8, 6, 7 are 40, 10, 7, 15, 28, where the value in bold
denotes the changed random demand upon arrival of a vehicle at the customer location.
The comparison of the proposed algorithm with the classical GA for VRP DDTW in
Section 2 is done and Figure 1 gives the convergence effect of the total cost. From Figure
1, it can be seen that the total cost decreases with the increase of the number of iterations,
and the minimal total cost caused by the vehicle routing problem with dynamic demands
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Table 1. Customer information

Customer i di [Ei, Li] fi
tij

0 1 2 3 4 5 6 7 8
0 − − − 0 29 17 15 27 23 11 16 19
1 35 [35, 80] 10 − 0 14 10 9 19 8 10 21
2 60 [24, 40] 8 − − 0 11 15 7 12 8 7
3 0 − 13 − − − 0 10 9 16 9 15
4 45 [20, 85] 7 − − − − 0 12 4 13 9
5 30 [18, 60] 6 − − − − − 0 13 5 10
6 70 [15, 90] 4 − − − − − − 0 6 8
7 0 − 9 − − − − − − − 0 17
8 40 [20, 80] 11 − − − − − − − − 0

Table 2. Algorithm parameters

Population size M
Probability of recombination

operator Pr

Maximum number
of iterations

G

10 0.4 300 20000

Table 3. Optimal route policy

Vehicle Route Discharging amount

1 0 → 1 → 0’→ 6 → 0 0 → 35/15 → 0’→ 50/− → 0
2 0 → 2 → 1 → 0’→ 8 → 6 → 7 → 0 0 → 40/− → −/10 → 0’→ 7/− → 15/− → −/28 → 0
3 0 → 4 → 6 → 0’→ 3 → 7 → 0 0 → 45/− → 5/− → 0’→ 45/− → −/2 → 0
4 0 → 5 → 8 → 0’→ 7 → 0 0 → 25/− → 25/− → 0’→ −/50 → 0

Figure 1. Convergence effect of the total cost

and time windows (VRP DDTW) is obviously smaller than that obtained by GA, which is
what we expected. This is because the initial solution in IPGA HA is determined through
HA, which fastens the search for the optimal solution. Moreover, the individuals after
recombinant in IPGA HA are still a feasible solution, which avoids that the IPGA HA
falls into the local optimum.
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5. Conclusions. A mathematical model for the vehicle routing problem with dynamic
demands and time windows (VRP DDTW) is established to find the optimal route by
minimizing the total cost. Since the demand may be changed once the vehicle arrives at
a customer, dynamic demand is modeled. The limit of time windows is more common in
practice such that it is considered, but it has no effect on the changed demand. IPGA HA
which employs HA to find the initial solution is then proposed to search the optimal route
and delivery goods. The simulation results show the proposed algorithm can obtain better
solution than GA with much less number of iterations. Since products may be deteriorated
in the transport process, VRP for perishable products will be studied in the future.
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