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Abstract. In this paper, we aim to study further theoretical properties of discrete-time
queuing systems. Taking into consideration the restriction of existing methods that the
arrival time interval of the customer or the customer service time is negative exponential
distributed, we use Markov skeleton processes to remove such restriction and obtain (1)
the instantaneous distribution of the queue length; (2) the stationary distribution of the
queue length; and (3) the busy period. In addition, the train-ticketing system is taken as
an example to illustrate our results, which is a reference for transportation and manage-
ment systems.
Keywords: Markov skeleton process, Stochastic service systems, Queue length

1. Introduction. Through the development for a century, “queuing theory”, as an im-
portant branch of the randomized operational research and application of probability
theory, has become a mature theoretical system. The achievements are widely used in all
kinds of fields, such as transportation system, supply chain in logistics system, medical
services system, computer network, communications, and other public services. Based on
the previous results on discrete-time queuing systems [1-3], Tian et al. studied system-
atically the discrete-time stochastic service systems [4-8], while Liu et al. [9] conducted
research on the performance of admission control for multi-traffic in wireless communica-
tion network based on discrete time queue. And Ma et al. [10,11] studied discrete-time
gated service system and discrete-time Geom/G/1 Queuing System. However, there is a
limitation in Tian’s work that the distribution of arrival time interval of customer and
the customer service time is assumed to be geometric distribution.

We conduct a thorough research on the discrete-time stochastic service systems, and
present the stability and the instantaneous form of the queue length by using Markov
skeleton process [12] which is a widely used method in queuing theory and other areas [13].
Recently, the behavior of a discrete-time single-server queuing system with general service
times was analyzed by Feyaerts et al. [14], and the discrete-time queuing system where
each customer has a maximum allowed sojourn time was given by Bruneel and Maertens
[15]. Wu et al. [16] considered a discrete-time Geo/G/1 retrial queue with impatient
customers.

In this work, the distributions of arrival time interval of customer and customer service
time are given without too many restrictions (different from Tian’s work, which limits one
of the two distributions to geometric distribution). Furthermore, the existence conditions
of the instantaneous distribution (Section 3) and stationary distribution (Section 5) of
the queue length of discrete-time stochastic service system are presented, as well as the
busy period (Section 4). Eventually, the applications of our results and conclusions are
given in Section 6 and Section 7.
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2. Preliminaries of Markov Skeleton Process.

Definition 2.1. {X(t), t < T} is a left-limit and right-continuous stochastic process with
value in E, if there exists a sequence of stopping times (τn), satisfying:
(i) τn ≡ 0 and τn ↑ T ;
(ii) X(t) has Markov properties in τn (n ≥ 1);
(iii) τn+1 = τ1 + θτ1τn, where θt denotes the shift operator: (θtω)s = ωt+s.
{X(t), t < T} is called a Markov skeleton process, and (τn) is called the skeleton time

sequence of X(t).

Lemma 2.1. If X(t) is a Markov skeleton process with (τn) as its skeleton time sequence,
then τn+1 − τ1 = θτ1τn is σ(X(τ1 + t), t ≥ 0)-measurable.

Proof: τn is an F∞-measurable stopping time, and thereby there is a measurable
function f(x1, x2, . . .) and a sequence {t1, t2, . . .}, such that:

τn(ω) = f(x(t1, ω), x(t2, ω), . . .)

τn+1 − τ1 = θτ1τn = f(x(τ1 + t1, ω), x(τ1 + t2, ω), . . .)

Thus, we get our lemma proved.
A random process is (only) determined by its finite-dimensional joint distribution, that

is, two random processes having an identical finite dimensional distribution can be seen as
an identical process. Hence, the determination of the finite dimensional joint distribution,
especially its one dimensional distribution, is a key step in the research of a stochastic
process. The tool we used is the backward equation.

Let X(t) be a Markov skeleton process with skeleton time sequence (τn), and let

h(x, t, A) = P (X(t) ∈ A, t < τ1|X(0) = x)

q(x, t, A) = P (X(τ1) ∈ A, τ1 ≤ t|X(0) = x)

EN = exp

{
∞∑

k=1

1 − ak

k

}
= exp

{
∞∑

k=1

xk

k

}
Namely,

q(x, ds, A) = P (X(τ1) ∈ A, τn ∈ ds|X(0) = x)

P (x, t, A) = P (X(t) ∈ A|X(0) = x)

P (n)(x, t, A) = P (X(t) ∈ A, t < τn|X(0) = x)

Theorem 2.1. Let X = {X(t), t < T} be a Markov skeleton process with skeleton time
sequence {τn}∞n=0, then for any x ∈ E, t ≥ 0, A ∈ E = B(E), we have{

P (1)(x, t, A) = h(x, t, A)

P (n+1)(x, t, A) = h(x, t, A) +
∫

E

∫ t

0
(q(x, ds, dy))P (n)(y, t − s, A)

(1)

Thereby, {P (x, t, A)} is a minimal non-negative solution of the following non-negative
equation system:

P (x, t, A) = h(x, t, A) +

∫
E

∫ t

0

q(x, ds, dy)P (y, t − s, A) x ∈ E, t ≥ 0, A ∈ E (2)

Proof: Apparently, the first equation in (1) is correct.
For any x ∈ E, t ≥ 0, A ∈ E , n ∈ N ,

P (n+1)(x, t, A)

= P (X(t) ∈ A, t < τ1) + P (X(t) ∈ A, τ1 ≤ t < τn+1|X(0) = x)

= h(x, t, A) +

∫
E

∫ t

0

P (X(t) ∈ A, t − s < τn+1 − τ1|X(τ1) = y, τ1 = s, X(0) = x)
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×P (X(τ1) ∈ dy, τ1 ∈ ds|X(0) = x)

= h(x, t, A) +

∫
E

∫ t

0

P (X(t − s + τ1) ∈ A, t − s < θτ1τn|X(τ1) = y, τ1 = s, X(0) = x)

×q(x, ds, dy)

By the homogeneity property and the Markov property at τ1 of X = {X(t), t < T} in
Lemma 2.1, we have

P (X(t − s + τ1) ∈ A, t − s < θτ1τn|X(τ1) = y, τ1 = s, X(0) = x)

= P
(
X(t − s) ∈ A, t − s < τn|X(0) = y, P (n)(y, t − s, A)

)
Hence,

P (X(t) ∈ A, t < τn+1|X(0) = x) = h(x, t, A) +

∫
E

∫ t

0

q(x, ds, dy)P (n)(y, t − s, A)

Then the second equation in (1) is proved. By the theory of smallest non-negative
solution, {P (x, t, A)} is the smallest non-negative solution of Equation (2). Equation (2)
is called the backward equation of the Markov skeleton process {X(t), t < T}.

Definition 2.2. Suppose X(t) is a stochastic process on (Ω,F , P ) taking values in (E, E).
If for any x ∈ E, A ∈ E, lim

t→∞
P (x, t, A) exists and does not depend on x, thus P (A) ≡

lim
t→∞

P (x, t, A), (A ∈ E) is a probability distribution in (E, E), then the limit (probability)

distribution of X(t) exists, and P (·) is called the limit (probability) distribution of X(t):

P (x, t, A) = P (X(t) ∈ A|X(0) = x)

Definition 2.3. Suppose X(t) is a Markov skeleton process with skeleton time sequence
{τn}∞n=0. If there exists a probability measure π(·) on (E, E) such that for any A ∈ E,

P (X(τ1) ∈ A|X(0) = x, τ1 = s) = P (X(τ1) ∈ A) = π(A) (3)

then, X(t) is called a Doob skeleton process, π(·) is the characteristic measure of X(t),
and {τn}∞n=0 are the regeneration points of X(t).

Let

F (x, t) = P (τ1 ≤ t|X(0) = x)

F (t) =

∫ ∞

0

π(dx)F (x, t)

m =

∫ ∞

0

tdF (t)

Thus, we have the definition as follows.

Definition 2.4. Suppose X(t) is a Doob skeleton process, if m < ∞ and for any x ∈ E,
F (x, 0) = 0, F (x,∞) ≡ 1, then we call X(t) a positive recurrent Doob skeleton process.

Theorem 2.2. Suppose X(t) is a positive recurrent Doob skeleton process. If F (t) is
non-grid distribution, then for any A ∈ E, lim

t→∞
P (x, t, A) exists:

P (A) =: lim
t→∞

P (x, t, A) =

∫∞
0

∫
E

h(y, t, A)π(dy)dt

m
, ∀A ∈ E (4)

and P (·) is the characteristic measure on (E, E).
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3. Instantaneous Distribution of the Queue Length. The stochastic service system
is also called the crowded system and queuing system. A queuing system is called the
GI/G/1 queuing system if it satisfies:

(i): The customers arrive at the reception time . . . τ−2, τ−1, τ0, τ1, τ2, . . . (where τi (i =
. . . ,−2,−1, 0, 1, 2, . . .) is integer), the arrival time intervals

tn = τn − τn−1 (n ∈ Z = (. . . ,−2,−1, 0, 1, 2, . . .))

are independently and identically distributed random variables, and their common distri-
bution is

αk = P (tn = k) (k = 1, 2, . . .)

(ii): The customer’s service times, . . . , v−3, v−2, v−1, v0, v1, v2, . . ., are independently and
identically distributed random variables taking integer values, and mutually independent
with {tn, n ∈ Z}. Their common distribution is

βk = P (vn = k) (k = 1, 2, . . .)

(iii): There is a waiter with first-come-first-served rules.
Let L(n) be the number of customers in the queue at time n (the sum of the number

of customers waiting and at the front of the service at time n), i.e., the queue length
of a GI/G/1 queuing system, and D1(n) be the time from the arrival time of the last
customer before time n to time n, thus D2(n) is defined as follows: if the reception is idle
at time n, then D2(n) = 0; else D2(n) equals the service hours completed by time n. As
known, L(n) may not be a Markov chain, but must be a Markov skeleton process with
0, . . . , r1, r2, . . . as its skeleton time sequence, where r1 = min (the time of first customer’s
arrival after time 0, service is finished of the first customer after time 0).

Let

D1(0) = D1, D2(0) = D2

Thus, obviously, D1(n), D2(n) are random variables taking integer values.
Let

h(i,D1, D2, j, n) = P (L(n) = j, n < r1|L(0) = i, D1(0) = D1, D2(0) = D2)

q(i,D1, D2, s, m) = P (r1 = s, L(s) = m|L(0) = i, D1(0) = D1, D2(0) = D2)

P (i,D1, D2, j, n) = P (L(n) = j|L(0) = i, D1(0) = D1, D2(0) = D2)

Apparently
i = 0,

h(0, D1, D2, j, n) =


1 −

n∑
k=1

αD1+k

∞∑
k=1

αD1+k

, j = 0, D2 = 0

0, j ̸= 0, or D2 ̸= 0, or D1 = 0

q(0, D1, D2, s, m) =


αD1+s

∞∑
k=1

αD1+k

, m = 1

0, m > 1

i > 0,

h(i, D1, D2, j, n) =



1 −

n∑
k=1

αD1+k

∞∑
k=1

αD1+k


1 −

n∑
k=1

βD2+k

∞∑
k=1

βD2+k

 , j = i

0, j ̸= i
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q(i,D1, D2, s, m)I(1,2,...)(i) =



 αD1+s
∞∑

k=1
αD1+k


1 − βD2+s

∞∑
k=1

βD2+k

 , m = i + 1

1 − αD1+s
∞∑

k=1

αD1+k


 βD2+s

∞∑
k=1

βD2+k

 , m = i − 1

 αD1+s
∞∑

k=1

αD1+k


 βD2+s

∞∑
k=1

βD2+k

 , m = i

0, others

From Theorem 2.1, we obtain:

Theorem 3.1. {P (i,D1, D2, j, n)} is the smallest non-negative solution of the following
linear equation. It is also the unique bounded solution and the unique finite solution.

P (i,D1, D2, j, n)

= h(i,D1, D2, j, n) + I(0)(i)
n−1∑
s=1

αD1+s
∞∑

k=1

αD1+k

P (i, 0, 0, j, n − s)

+ I(1,2,...)(i)

n−1∑
s=1

 αD1+s
∞∑

k=1

αD1+k

1 − βD2+s
∞∑

k=1

βD2+k

P (i + 1, 0, D2 + s, j, n − s)

+
βD2+s

∞∑
k=1

βD2+k

1 − αD1+s
∞∑

k=1

αD1+k

P (i − 1, D1 + s, 0, j, n − s)

+
αD1+s

∞∑
k=1

αD1+k

βD2+s
∞∑

k=1

βD2+k

P (i, 0, 0, j, n − s)


 (5)

4. Busy Period. The busy period means: when a customer arrives at the idle desk, the
busy period begins, and lasts until the service desk becomes idle once again which means
the desk busy period has been finished.

Let A(x) and B(x) represent the distribution of the arrival time interval and the service
time for each customer, respectively, and thus we have

A(x) =
[x]∑

k=1

αk

B(x) =
[x]∑

k=1

βk,

[x] is an integer not greater than x

Let

λ =
1∫∞

0− xdA(x)
=

1

E(tn)
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µ =
1∫∞

0− xdB(x)
=

1

E(νn)

ρ =
λ

µ

ak =

∫ ∞

0−

[
1 − A(k)(x)

]
dB(k)(x)

where A(k)(x) and B(k)(x) represent k fold convolution of A(x) and B(x), respectively.
Let N denote the number of customers served in a busy period, and D̄ represent the

average length of the busy period; thus through [17] (there is no other assumptions but
1
λ

< +∞, 1
µ

< +∞ in the results presented in the paper), we get:

Theorem 4.1. If ρ = λ
µ

< 1,

EN = exp

{
∞∑

k=1

1 − ak

k

}
< ∞ (6)

D̄ =
1

µ
exp

{
∞∑

k=1

1 − ak

k

}
< ∞ (7)

5. Stationary Distribution of Queue Length. Let ξ0 = 0, ξi (i = 1, 2, . . .) denote
the time of the i-th occurrence of the state (i, 0, 0). Apparently, (L(n), D1(n), D2(n)) is a
Markov skeleton process with (ξn) as the skeleton time sequence, and it is a Doob skeleton
process as well. There exists a characteristic measure:

π(i,D1, D2) = P (L(ξn) = i, D1(ξn) = D1, D2(ξn) = D2)

=

{
1, i = 1, D1 = 0, D2 = 0
0, otherwise

F (n) = P (ξ2 − ξ1 ≤ n)

Let

λ =
1

E(tn)
, µ =

1

E(νn)
, ρ =

λ

µ

Thus, we have the following results directly from the results presented in [18-20].

Lemma 5.1. (ξ2− ξ1) is non-grid distribution if and only if (αk) is non-grid distribution.

By Theorems 2.2 and 4.1, we obtain

Theorem 5.1. If ρ = λ
µ

< 1, (αk) and (βk) are not one-point distributions, and (αk) is

a non-grid distribution, then lim
n→∞

P (i,D1, D2, j, n) = Pj, and (Pj)0≤j<+∞ is a probability

distribution.

6. Applications in Transportation Management. Suppose in a ticket window of a
train station, the distribution of the customers’ arrival time is assumed to be

αk =


δ

100
, k = 1

100 − δ

100
, k = 2, 0 < δ < 100

0, k ≥ 3

and the distribution of the customer’s service time is βk = 1 (time unit for three minutes).
Now the busy period of this system can be calculated using the results in Section 4:

Eαk =
δ

100
· 1 +

100 − δ

100
· 2 + 0 =

200 − δ

100
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λ =
100

200 − δ
, µ = 1

ρ =
100

200 − δ
< 1, 1 < δ < 100

ak =

∫ ∞

0−

[
1 − A(k)(x)

]
dB(k)(x)

=
∞∑

x=0

P (t1 + t2 + · · · + tk > x)P (v1 + v2 + · · · + vk = x)

= P (t1 + t2 + · · · + tk > k) · 1
= 1 − P (t1 + t2 + · · · + tk ≤ k)

= 1 − P (t1 + t2 + · · · + tk = k)

= 1 −
(

δ

100

)k

Let
ak = 1 − xk, 0 < x < 1

Thus,∫ x

0

(
∞∑

k=1

xk

k

)′

dx =

∫ x

0

∞∑
k=1

xk−1dx =

∫ x

0

1

1 − x
dx =

∫ x

0

1

1 − t
dt = − ln(1 − x)

EN = exp

{
∞∑

k=1

1 − ak

k

}
= exp{− ln(1 − x)} =

1

1 − x
, EN =

100

100 − δ

Similarly,

D̄ =
1

µ
exp

{
∞∑

k=1

1 − ak

k

}
=

1

1 − x
, D̄ =

100

100 − δ

If δ = 99,
EN = 100, D̄ = 100

The busy period is 300 minutes (EN × 3).

Figure 1. D̄ against δ
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7. Conclusions.
(1) Using Markov skeleton processes, we analyze the discrete-time queuing systems

without putting any restriction, which is necessary in previous researches by using other
methods, on the distribution of the arrival time interval of customer or the customer
service time. In our work, we obtain (a) the instantaneous distribution of the queue
length; (b) the stationary distribution of the queue length; and (c) the busy period.

(2) The train-ticketing system is taken as an example to illustrate our results, which is
a reference for transportation and management systems.
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