
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 4, April 2016 pp. 903–908

A NEW SIDE-HOLE ACOUSTIC METHOD TO IDENTIFY
CAST-IN-SITU PILES DEFECT TYPES BASED ON W-PNN

Bingxin Li1, Huijian Li2,∗, Lixin Zhang1 and Chen Zhang1

1Institute of Urban Construction
Hebei Normal University of Science and Technology

No. 360, Hebei Avenue, Qinhuangdao 066004, P. R. China
zhang lx66@163.com

2School of Civil Engineering and Mechanics
Yanshan University

No. 438, Hebei Avenue, Qinhuangdao 066004, P. R. China
∗Corresponding author: ysulhj@163.com

Received October 2015; accepted January 2016

Abstract. In the field of identifying cast-in-situ pile defect types, a new method, i.e.,
optimized energy method (OEM) is proposed to overcome the low accuracy and reliability
of traditional method. In OEM, wavelet transform (WT) and probabilistic neural network
(PNN) are combined and used to build wavelet PNN (W-PNN), which is adopted to
extract the feature energy spectrum and classify defect types, respectively. Moreover, to
achieve a higher accuracy, optimized energy vector (OEV) of each signal is constructed by
its energy spectrum, first amplitude and velocity. As the validation of OEM, a number of
inspection signals from practical projects are applied. Experimental results indicate that
the proposed method can achieve much higher identification rate (IR) than traditional
method, and the increase of IR is nearly 20%.
Keywords: Wavelet transform, PNN, Optimized energy method, Acoustic transmission
method, Cast-in-situ pile, Defect type identification

1. Introduction. Cast-in-situ piles are widely used as building foundations for their
low cost and high loading capacity. However, it is difficult to control quality during
constructing process. Therefore, in the piles, sometimes there are some internal defects,
such as hole, necking, mixing mud, missing vibration, which would seriously influence the
safety of whole buildings. So the pile detection is usually indispensable before the next
step of construction. The side-hole acoustic method is widely used in pile testing field [1].
In this method, two holes are made on two opposite sides beside a pile, acting as channels
of emission sensor and receiver sensor respectively.

In traditional method, the defect types are usually identified through the first amplitude
and velocity of a signal [2], but because only a small part of the signal information (first
amplitude and velocity) is utilized, usually the identification accuracy is relatively low,
which sometimes cannot satisfy the engineering applications. To overcome this obstacle,
the study of finding more reliable methods has been a hotspot in pile nondestructive
testing (NDT) field in recent years.

We all know that as a wave propagates through a defect, it would be reflected, re-
fracted and absorbed, so the series of wave frequency band energies will attenuate. With
the defect type difference, the attenuations of these series of energies are different, i.e.
different frequency energy spectrums are formed. Hence, it would be a feasible way to
identify a certain defect type based on its energy spectrum. So, in this paper, a new
energy spectrum method is proposed. In this method, to enhance accuracy and reliabil-
ity, a super information processing technology, wavelet transform (WT), is adopted to
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extract the feature energy spectrum from each signal firstly; and then, to realize intel-
ligent identification, the probabilistic neural network (PNN), which is adept in pattern
identification, is utilized to train and classify defect types. Furthermore, to achieve more
effective results, some other useful parameters, such as first amplitude and velocity of a
signal, are also joined in the frequency energy spectrum to construct corresponding opti-
mized energy vector (OEV), which is used as the input of PNN. Therefore, this proposed
method can be named optimized energy method (OEM). Experimental results indicate
that these measures can successfully enhance the identification accuracy and reliability.
It should be pointed out that the acoustic signals adopted in this paper are acquired in
practical inspection projects of Qinhuangdao Pile Quality Test Center in recent years,
and the exact types of them have been confirmed through other inspection approaches.
The total identification procedures are shown in Figure 1.

Figure 1. Overall flowchart of pile defect type identification

The rest of the paper is organized as follows. In Section 2, the theoretical basis (WT and
PNN) is introduced briefly, and the theory of OEM (W-PNN) is proposed. In Section
3, the construction method of OEV is presented in detail. In Section 4, experimental
valuation is given, including the comparison results of the traditional method and OEM,
and finally some conclusions are drawn in Section 5.

2. W-PNN. WT is versatile in feature extraction and has been applied in identification
and selection as a terrific trait extraction tool in many fields [3]. A family of time-scale
waveforms can be expressed

ψa,b(t) = a−1/2ψ

(
t− b

a

)
, a > 0, b ∈ R (1)

where ψ(t) is a wavelet function which satisfies equation
∫

R
ψ(t)dt = 0, a is the scale

parameter and b is the time parameter. The WT of an arbitrary function x ∈ L2 can be
given by Equation (2).∫

R

f(t) · ψa,b(t)dt = a−1/2

∫
R

f(t) · ψ
(
t− b

a

)
dt (2)

The width and location of time frequency window change corresponding to the changes
of a and b, i.e., the size and location of time frequency window are variable. WT also
permits to decompose a signal in many levels [4], as shown in Figure 2. In each level,
the signal is decomposed into approximation part and detail part with the use of low-
pass filter and high-pass filter. Hence, WT can provide a multi-scale and multi-resolution
analysis.
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Figure 2. Tree of wavelet transform

Figure 3. Model of PNN

PNN is a kind of self-monitoring neural network, whose theory basis is Bayesian min-
imum risk criteria [5]. The PNN model is composed of four layers: input layer, pattern
layer, summation layer and output layer whose functions are receiving input vectors, cal-
culation, data summation and outputting results, respectively. Its model is shown in
Figure 3.

Through Equation (3), the output of each unit in the pattern layer is calculated.

Φij(x) = (2π)−0.5dσ−d exp

[
−(x− xij)

T (x− xij)

2σ2

]
(3)

where i = 1, · · · ,M , j = 1, · · · , N , M is the total number of classes in the training
samples, xij is the jth mode, N is the number of neurons in the pattern layer of the
PNN ith class, σ and d are the smooth parameter and the data dimension of the samples.
The summation layer is the cumulative probability belonging to a certain class, which is
calculated through Formula (4).

fiNi
(x) = N−1

i

Ni∑
j=1

Φij(x) (4)

Compared with other neural networks, the convergence speed of PNN is much faster
and the recognition is more effective [6]. In this paper, WT and PNN are combined and
used to build wavelet-probabilistic neural network (W-PNN). In W-PNN, WT is adopted
to extract feature energy spectrum and PNN to train and identify. Its model is shown in
Figure 4.

Figure 4. Structure of W-PNN
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As shown in Figure 4, the series of x1, · · · , xm are the series of original input signals, the
series of I1, · · · , Im are the series of constructed energy vectors and the series of y1, · · · , yn

are the series of output results.

3. Construction of OEV. Suppose ai is the amplitude of ith point of a signal S(t), its
energy can be calculated through Formula (5).

E =

∫
|S(t)|2dt =

n∑
i=1

|ai|2, i = 1, 2, · · · , n (5)

Similarly, the energies of sub-signals (A1, D1, A2, D2, A3, D3, · · · ) can also be calculated
through Formula (5).

The average amplitude AA of a signal can be calculated through the following formula:

AA =
n∑

i=1

|ai|, i = 1, 2, · · · , n (6)

where ai is the amplitude of the ith point of the signal. Suppose the distance between the
emission sensor and the receiver sensor is l, the propagation time of the wave is t, then
the velocity: V = l/t.

To achieve easy convergence of W-PNN, all elements of the OEV are processed into
relative values. Through lots of experiment validations, we notice that the differences
between defect signals and no-defect signals (the signals that propagate through good
quality concrete material) are significant in identifying defect types. So, in this paper,
the OEV of a signal is designed as Formula (7).

I =

[
AA∗ − AA

(AA∗ − AA)max

,
V ∗ − V

(V ∗ − V )max

,
E∗

1 − E1

(E∗
1 − E1)max

,
E∗

2 − E2

(E∗
2 − E2)max

, · · · , E∗
k − Ek

(E∗
k − Ek)max

]
(7)

where AA∗, V ∗, E∗
1 , E

∗
2 , · · · , E∗

k are the average amplitude, velocity and a series of en-
ergy spectrum of a no-defect signal, and AA, V,E1, E2, · · · , Ek are those of a defect one
respectively.

4. Experiment and Valuation. The entire inspection system diagram is shown in Fig-
ure 5. During testing, the emission sensor and receiver sensor always keep the same ele-
vation as they move from bottom to top of a pile.

Figure 5. Total inspection system diagram of testing

4.1. Identification results of traditional method. In traditional method, the first
amplitude and wave velocity of a signal are acquired firstly, and the type identification is
based on them. The identification results are listed in Table 1.

From Table 1, we noticed that the identification rates (IRs) range from 56.0% to 66.0%,
which are relatively low, so this method is usually not satisfied in engineering applications.
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Table 1. Identification results of traditional method

Defect type Hole Necking Mixing mud Missing vibration
Misjudgment 6 5 2 4

Failure 10 9 9 7
Identification 31 20 14 15

Identification rate 66.0% 58.8% 56.0% 57.7%

4.2. Identification results of OEM. In OEM, the first amplitude and wave velocity
of each signal are also utilized. The wavelet functions and the number of decomposition
levels are adjusted according to the extraction effects. Finally, the function db5 and 3 level
are adopted. The energies of sub-signals D1, D2, D3, A3 are E1, E2, E3, E4, respectively.
Part of OEVs of all type defects are listed in Table 2.

Table 2. Part of OEVs

Defect type Hole Necking
Mixing Missing Element

mud vibration serial number

(AA∗ − AA) / (AA∗ − AA)max 0.651 0.8043 1.0000 0.9428 1

(V ∗ − V )/(V ∗ − V )max 0.8436 0.9533 1.0000 0.8976 2

E
n
er

gy
sp

ec
tr

u
m (E∗

1 − E1) / (E∗
1 − E1)max 1.0000 0.9742 0.2406 0.3745 3

(E∗
2 − E2) / (E∗

2 − E2)max 0.2895 0.4672 0.3164 1.0000 4

(E∗
3 − E3) / (E∗

3 − E3)max 0.7519 0.6787 1.0000 0.4687 5

(E∗
4 − E4) / (E∗

4 − E4)max 0.8359 1.0000 0.9421 0.7862 6

To present OEVs more directly, a column chart is illustrated in Figure 6.

Figure 6. Energy column chart of OEVs

As shown in Figure 6, the proportional distributions of the OEV elements of these four
type defects are different, so it is a feasible approach to classify defect types with the use
of W-PNN. In next stage, the parameters of the W-PNN are also adjusted based on the
identification results, and finally identification results are listed in Table 3. From Table 3,
we also noticed that the IRs of OEM range from 76.0% to 85.1%, which are much higher
than those of the traditional method.

Table 3. Identification results of OEM

Defect type Hole Necking Mixing mud Missing vibration
Misjudgment 3 2 1 2

Failure 4 5 5 4
Identification 40 27 19 20

Identification rate 85.1% 79.4% 76.0% 76.9%
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5. Conclusions. In this paper, OEM is proposed in the field of cast-in-situ pile defect
type identification. In the proposed method, WT and PNN are combined and used to
construct W-PNN, and OEV of each signal is constructed by its energy spectrum, first
amplitude and wave velocity to enhance the identification accuracy. Experimental results
indicate that the proposed method has great advantages over traditional one, and the
accuracy is increased up to nearly 20%, as shown in Table 1 and Table 3. However, we
also notice that the IRs of some type defects are yet relatively low, such as those of mixing
mud and missing vibration, which will be the focus of our next stage work.
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