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Abstract. A new three-dimensional discrete chaotic system is proposed by using forw-
ard-Euler scheme. The dynamics of this system is considered, and the existence and
stability of fixed points are also discussed. Based on explicit Neimark-Sacker bifurcation
criterion, center manifold theory and normal form theory, the existence, stability and
direction of Neimark-Sacker bifurcation are studied. Finally, a numerical example is
provided for justifying the validity of the theoretical analysis.
Keywords: Stability, Center manifold theorem, Forward-Euler scheme, Neimark-Sacker
bifurcation

1. Introduction. The dynamical system refers to the dynamic system of change over
time, which includes continuous dynamical systems and discrete dynamical systems.
There are many scholars focusing on the continuous system’s bifurcation, but the research
about bifurcation of discrete systems is relatively few. Compared with the continuous sys-
tem, the discrete systems possess their unique dynamic characteristics. In the real life,
many practical problems can be depicted by the discrete systems, and we can also dis-
cretize the continuous systems. Therefore, the study of discrete system is very important
and achieved great development in the field of mathematics, physics and engineering. Hu
et al. [1] obtained an epidemic model by using Euler difference method, and discussed
the Neimark-Sacker bifurcation of the system based on the center manifold theorem and
the bifurcation theory. Wang and Feng [2] used the Euler difference method to get a
discrete BVP oscillator, and studied the existence and stability of the fixed points. Xin et
al. [3] proposed a financial system by using forward-Euler difference method, and investi-
gated the Neimark-Sacker bifurcation of the system based on normal form method, center
manifold theory and Neimark-Sacker bifurcation theory. Elabbasy et al. [4] focus on a
two-dimensional discrete Lorenz system, and mainly studied the Pitchfork bifurcation,
Flip bifurcation and Neimark-Sacker bifurcation of the system. At present, the researches
on the bifurcation of discrete systems are mostly concentrated in the two-dimensional sys-
tems [5-10], and there are few studies focusing on the three dimensional discrete system.

Lei and Wang [11] proposed a new three-dimensional continuous system as follows: ẋ = a(y − x),
ẏ = cx − dy − xz,
ż = x2 − bz,

(1)

where (x, y, z) ∈ R3 are the state variables and (a, b, c, d) ∈ R4 are real parameters. We
use the forward-Euler difference method to the system (1), and obtain a three-dimensional
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discrete system as follows: xn+1 = xn + ha (yn − xn)
yn+1 = yn + h (cxn − dyn − xnzn)
zn+1 = zn + h (x2

n − bzn)
(2)

where h (0 < h < 1) is the step size, and (a, b, c, d) ∈ R4 are real parameters. In this
paper, we will study the existence and stability of the fixed points of system (2), and the
existence, stability and direction of Neimark-Sacker bifurcation.

The paper organizes as follows. We discuss the existence and local stability of equilibria
in system (2) in Section 2. In Section 3, we study Neimark-Sacker bifurcation for system
(2) by choosing h as a bifurcation parameter. We present the numerical simulations
illustrating our results with the theoretical analysis in Section 4. In Section 5, we conclude
the paper.

2. Existence and Stability of the Fixed Points. The fixed points of system (2)
satisfy:  xn = xn + ha (yn − xn)

yn = yn + h (−xnzn + cxn − dyn)
zn = zn + h (x2

n − bzn)
(3)

Lemma 2.1. (1) For any parameters, the system (2) has only one fixed point: E0 =
(0, 0, 0); (2) If b (c − d) > 0, the three-dimensional discrete system (2) has three fixed

points: E0 = (0, 0, 0), E± =
(
±

√
b (c − d),±

√
b (c − d), c − d

)
.

Next, we study the stability of E0 and E±. The Jacobian matrix at E = (x∗, y∗, z∗) is

J (E) =

 1 − ha ha 0
−hz∗ + hc 1 − hd −hx∗

2hx∗ 0 1 − hb

 (4)

From the local stability theory of fixed point, it is easy to obtain the following lemmas.

Lemma 2.2. (1) If one of the following conditions is satisfied, the fixed point E0 is local
asymptotically stable:

(a) (a − d)2 + 4ac ≥ 0, 0 < h < min

{
2
b
,

a+d+
√

(a−d)2+4ac

ad−ac
,

a+d−
√

(a−d)2+4ac

ad−ac

}
;

(b) (a − d)2 + 4ac < 0, 0 < h < 2
b
, (ad − ac) h < a + d.

(2) If one of the following conditions is satisfied, the fixed point E0 is not stable:

(a) (a − d)2 + 4ac ≥ 0, h > 2
b
,

(
a + d +

√
(a − d)2 + 4ac

)
h < 0

or

(
a + d +

√
(a − d)2 + 4ac

)
h > 4,

(
a + d −

√
(a − d)2 + 4ac

)
h < 0

or

(
a + d −

√
(a − d)2 + 4ac

)
h > 4;

(b) (a − d)2 + 4ac < 0, (ad − ac) h > a + d, hb < 0 or hb > 2.
(3) If one of the following conditions is satisfied, the fixed point E0 is non-hyperbolic

point:

(a) (a − d)2 + 4ac ≥ 0, h = 2
b
, or h =

a+d+
√

(a−d)2+4ac

ad−ac
, or h =

a+d−
√

(a−d)2+4ac

ad−ac
;

(b) (a − d)2 + 4ac < 0, h = 2/b, h = (a + d)/(ad − ac).

Lemma 2.3. (1) If 0 < h (a + b + d) < 6, 0 < 2ab (c − d) h2− (ab + bd) h+(a + b + d) <
2, the fixed point E+ is local asymptotically stable;

(2) If h (a + b + d) > 6 or h (a + b + d) < 0, 2ab (c − d) h2−(ab + bd) h+(a + b + d) > 2
or 2ab (c − d) h2 − (ab + bd) h + (a + b + d) < 0, the fixed point E+ is unstable.
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3. Neimark-Sacker Bifurcation Analysis. When (a − d)2 + 4ac < 0, the eigenvalues
of system (2) can be written as

λ1,2 = (2 − ha − hd)/2 ± ih

√
− (a − d)2 − 4ac

/
2, λ3 = 1 − hb. (5)

Assume that h0 = (a + d)/(ad − ac), and b (a + d)/a (d − c) ̸= 0, 2, a (d − c) ̸= 0, and
we can get:

|λ1,2 (h0)| =
√

1 − (a + d) h0 + (ad − ac) h2
0 = 1, |λ3 (h0)| =

∣∣∣∣1 − b (a + d)

a (d − c)

∣∣∣∣ . (6)

d (|λ1,2|)/dh|h0=a+d/a(d−c) =
a + d

2
̸= 0, (7)

λ1,2 (h0) = 1 − (a + d)2

2a (d − c)
±

(a + d)
√
− (a − d)2 − 4ac

2a (d − c)
i, λ3 (h0) = 1 − b (a + d)

a (d − c)
. (8)

And by calculation we can get λm
1,2 (h0) ̸= 1, 2, 3, 4. According to Neimark-Sacker bifurca-

tion theory [12], the Neimark-Sacker bifurcation occurs at the fixed point E0.
Next, we will analyze the stability and direction of the Neimark-Sacker bifurcation.

First, the system (2) can be written as

Xn+1 = JXn +
1

2
B(Xn, Xn) +

1

6
C(Xn, Xn, Xn) + O(X4

n), (9)

where J is the Jacobin matrix at the fixed point E0, O(X4
n) is the 4 order indefinite small

of Xn. And for i = 1, 2, 3, we can get:

Bi(x, y) =
3∑

j,k=1

∂2Xi(ξ, 0)

∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk, Ci(x, y, z) =
3∑

j,k,l=1

∂3Xi(ξ, 0)

∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykzl, (10)

Let p, q ∈ C3 be vectors such that:

Jq = λ1q, JTp = λ2p, ⟨p, q⟩ =
3∑

i=1

p̄iqi = 1, (11)

where JT is the transpose of the J , and λ1, λ2 is a pair of complex conjugate eigenvalues
at the fixed point E0. For the system (2), we can get

B (x, y) =

(
0,− a + d

a (d − c)
(x1y3 + x3y1) ,

2 (a + d)

a (d − c)
x1y1

) T

, C (x, y, z) = (0, 0, 0)T ,

(12)

q =

d − a

2c
+

√
− (a − d)2 − 4ac

2c
i, 1, 0

T

, p = (ξ3 + ξ4i, ξ1 + ξ2i, 0)T , (13)

where

ξ1 =
(a − d)2 + 3ac

2 (a − d)2 + 9ac
, ξ2 =

(a − d)
√
− (a − d)2 − 4ac

2 (a − d)2 + 9ac
,

ξ3 =
d − a

2a
ξ1 +

√
− (a − d)2 − 4ac

2a
ξ2, ξ4 =

d − a

2a
ξ2 −

√
− (a − d)2 − 4ac

2a
ξ1.

Thus, we can obtain

g20 = ⟨p,B (q, q)⟩ = 0, g11 = ⟨p,B (q, q̄)⟩ = 0, g02 = ⟨p,B (q̄, q̄)⟩ = 0,
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g21 = ⟨p, C (q, q, q̄)⟩ + 2
⟨
p,B

(
q, (In − J)−1 B (q, q̄)

)⟩
+

⟨
p,B

(
q̄,

(
λ2

1In − J
)−1

B (q, q)
)⟩

+
λ2 (1 − 2λ1)

1 − λ1

g20g11 +
2

1 − λ1

|g11|2 +
λ1

λ3
1 − 1

|g02|2

=
(a + d)2 (d − a)

abc2h (d − c)2 ξ1 +
(a + d)2

√
− (a − d)2 − 4ac

abc2h (d − c)2 ξ2 + ξ1φ1 − ξ2φ2

+

(a + d)2
√

− (a − d)2 − 4acξ1 − (a + d)2 (d − a) ξ2

abc2h (d − c)2 + ξ2φ1 + ξ1φ2

 i,

where

ω1 =
A1 (B1 − 1 + hb) + A2B2

(B1 − 1 + hb)2 − B2
2

, ω2 =
A2 (B1 − 1 + hb) − A2B2

(B1 − 1 + hb)2 − B2
2

,

A1 =
(a − d)2 (a + d) + 2ac (a + d)

a2c2 (d − c)
, A2 =

(d − a)2
√
− (a − d)2 − 4ac

2ac2 (d − c)
,

B1 =
2 + h2 (a2 + d2 + 2ac) − 2h (a + d)

2
, B2 =

h (2 − ha − hd)
√
− (a − d)2 − 4ac

2
,

φ1 =
(a2 − d2) ω1 − ω2 (a + d)

√
− (a − d)2 − 4ac

2ac (d − c)
,

φ2 =
(a2 − d2) ω2 + ω1 (a + d)

√
− (a − d)2 − 4ac

2ac (d − c)
.

Then, by calculation one has

l1 (h0) = Re

(
λ2g21

2

)
− Re

(
λ2

2 (1 − 2λ1)

2 (1 − λ1)
g20g11

)
− 1

2
|g11|2 −

1

4
|g02|2 =

δ

4abc2h0 (d − c)2 ,

(14)
where

δ = (2 − h0a − h0d)

[
4abc2h0 (d − c)2 (ξ1φ1 − ξ2φ2) + (a + d)2

√
− (a − d)2 − 4acξ2

+ (a + d)2 (d − a) ξ1

]
+ h0

√
− (a − d)2 − 4ac

[
(a + d)2

√
− (a − d)2 − 4acξ1

− (a + d)2 (d − a) ξ2 + 4bc2h0 (d − c)2 (ξ2φ1 − ξ1φ2)

]
.

Theorem 3.1. The direction and stability of Neimark-Sacker bifurcation at the fixed
point E0 are determined by l1 (h0). If l1 (h0) < 0 (> 0), the Neimark-Sacker bifurcation of
system (2) at the fixed point h0 = (a + d)/(ad − ac), is supercritical (subcritical), and the
unique closed invariant curve bifurcating from E0 is asymptotically stable (unstable).

4. Numerical Simulation. In order to justify the theoretical analysis, we choose one
group parameters: a = −0.1, b = 2, c = 4.7, d = 0.3 and we can get the critical value
of Neimark-Sacker bifurcation h0 = 0.4545. We fixed the parameter a = −0.1, b = 2,
c = 4.7, d = 0.3, and draw the global bifurcation diagram when h ∈ [0.2, 1], as shown
in Figure 1. From Figure 1, we see that the equilibrium E0 is stable when h < 0.4545,
and loses its stability when h = 0.4545. And there is a Neimark-Sacker bifurcation when
h > 0.4545. Figure 2 and Figure 3 show the time history and phase portraits of system
(2) for different values of h corresponding to Figure 1. The fixed point is stable when
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Figure 1. Bifurcation diagram in the (x, h) plane for a = −0.1, b = 2,
c = 4.7, d = 0.3

Figure 2. Time history and phase diagram of system (2) with h = 0.3

Figure 3. Time history and phase diagram of system (2) with h = 0.6

h = 0.3 < h0, and unstable when h = 0.6 > h0, as shown in Figure 2 and Figure 3,
respectively. Based on the previous conclusions, and through complex calculations, we
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can get l1 (h0) = 0.0528 > 0, and thus the Neimark-Sacker bifurcation of system (2) at
the fixed point E0 is subcritical, and the unique invariant curve which is resulting from
the bifurcation at fixed point is unstable.

5. Conclusions. In this paper, we use the forward-Euler difference method to construct
a new three-dimensional discrete chaotic system, and study the complex dynamical prop-
erties of the system. The existence and stability of the fixed points are considered. And
the existence, stability and direction of Neimark-Sacker bifurcation are investigated in
detail by using the center manifold theory and normal form theory. Finally, numerical
results are given to illustrate the correctness of theoretical analysis. The study shows that
the discrete systems have rich dynamic characteristics, and possess their unique proper-
ties compared with continuous systems. Therefore, the study of dynamics characteristic
of discrete system has a great significance both in theory and in engineering applica-
tion. Apparently there are more interesting problems about this discrete system in terms
of complexity, control and synchronization, codimension-two bifurcation, which deserve
further investigation.
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