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Abstract. The multi-objective optimal tracking performance of single-input single-out-
put (SISO) networked systems with the packet dropouts and channel noise is studied
in this paper. The tracking performance is measured by the energy of the error signal
between the output of the plant and the reference signal. The obtained result shows that
the optimal tracking performance is dependent on the non-minimum phase zeros, unstable
poles of a given plant, as well as the packet dropout probability and the power spectral
density of additive white Gaussian noise (AWGN) of communication channel. A typical
example is given to illustrate the theoretical result.
Keywords: Optimal tracking performance, Packet dropout probability, Non-minimum
phase zeros, Multi-objective optimization

1. Introduction. Control systems in which communication takes place over nontrans-
parent communication links are called networked systems. In recent years, the application
of networked systems has shown great growth. Due to their advantages, such as reduced
cost, low weight, high resource utilization and simple installation, networked systems have
been widely applied in many areas, for example, military, the robot control, automated
highway systems. While networked systems have received increasing research attention,
they also brought about new challenges due to the limitation of the network resource.
The network-induced delay and packet dropout are always inevitable as the sampling
data is transmitted through the network, and they cause the deterioration and instability
of system performance, so they have attracted much research interest.

The optimal H2 performance can be found in [1], and there were many analyses about
the tracking control problems [2]. The tracking performance of multi-input multi-output
(MIMO) linear time-invariant systems was studied in [2]. It showed that its unstable poles
and non-minimum phase (NMP) zeros of a given plant as well as the additive white Gauss-
ian noise impose unavoidable limitations on achievable performance. It also pointed out
that two-parameter controller structure can improve the tracking performance, however,
the optimal tracking performance has not considered the packet dropout in [2]. In recent
years, the topic of optimal tracking performance has been extended to networked sys-
tems [3]. The optimal tracking performance problem for MIMO networked systems with
communication constraints was studied in paper [3]. The optimal tracking problem for
SISO networked systems over a communication channel with packet dropouts was studied
in [4]. However, in [3], in order to attain the minimal tracking error, the control input
and channel input of networked systems often required to have an infinite energy in the
optimal tracking problem. This requirement cannot be met in general in practice. Thus,
the control input and channel input energy of networked systems should be considered in
the performance index to address this issue. In this paper, we study the multi-objective
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optimization performance problem in terms of the tracking error energy with considering
the channel input energy and control input energy, and meanwhile we consider communi-
cation channel of the packet dropouts and channel noise, which are more realistic models
of communication link than those in [3].

In this paper, we study the multi-objective optimization performance problem of SISO
networked systems with packet dropout and channel noise under the channel input en-
ergy and control input energy constraints. Using the square of the 2-norm to define
the multi-object optimization performance index and the explicit expression of multi-
objective optimization performance is obtained by applying the spectral factorization and
two-parameter compensator scheme. The obtained results show the optimal tracking per-
formance of networked systems which was determined by plant internal structure and
networked parameters, no matter what compensator is adopted, which will be guidance
for the design of networked systems.

This paper is organized as follows. Section 2 introduces the problem formulation. The
multi-objective optimization performance of networked systems with considering packet
dropout and channel noise is studied in Section 3. A typical example is given to illustrate
the results in Section 4. The paper conclusions and future research directions are presented
in Section 5.

2. Problem Statement. For any complex number z, we denote its complex conjugate
by z̄. For any signal x(t), we denote its Laplace transform byX. The expectation operator
is defined as E{·}. Let the open right-half plane be denoted by C+ := {s : Re(s) > 0},
the open left-half plane by C− := {s : Re(s) < 0}. L2 is the standard frequency domain
Lebesgue space. H2 and H⊥

2 are subspaces of containing functions that are analytic
in C+ and C−, respectively. Moreover, let ∥·∥ denote the Euclidean vector norm and
the norm ∥·∥2 in the space L2. The space L2 is the Hilbert space with inner product
⟨f, g⟩ := 1

2π

∫∞
−∞(fH(jw)g(jw))dw. For any f , g ∈ L2, they are orthogonal if ⟨f, g⟩ = 0.

It is well known that L2 can be decomposed into two orthogonal subspaces H2 and H⊥
2 .

Finally, RH∞ denotes the set of all stable, proper, rational transfer function.
We consider SISO networked systems with packet dropouts and channel noise of the

communication channel by two-parameter compensator as depicted in Figure 1, where
the problem is to obtain the multi-objective tracking performance of networked systems.
In this setup, G represents the plant model, and K = [K1 K2] represents the two degree
compensator, whose transfer function are denoted as G(s),

[
K1(s) K2(s)

]
, respectively.

The communication channel is characterized by two components: the parameter dr and
AWGN n. The parameter dr represents whether or not a packet is dropped:

dr =

{
0 if the systems output is not successfully transmitted to the controller
1 if the systems output is successfully transmitted to the controller

where the stochastic variable dr ∈ R is a Bernoulli distributed white sequence with
Prob{dr = 0} = q, Prob{dr = 1} = 1 − q, where q is the packet dropout probability.

The signal r, y, ŷ and u represent, respectively, the reference input, the system output,
channel input and the system input, whose transfer functions are R, Y , Ỹ and U . The

Figure 1. Networked system with packet dropout and channel noise
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reference signal r is a Brownian motion, and E{|r(t)|} = 0, E{|r(t)|2} = σ2
1. Channel

noise signal n is a zero mean Gaussian white noise, E{|n(t)|2} = σ2
2. And r, n, dr are

uncorrelated with each other in this paper.
For the reference signal r, Ẽ = R − Y is defined as the tracking error. According to

Figure 1, we can obtain Y = GRK1 +G(Y dr + n)K2, Y = GU , Y = Ŷ .
According to the calculation methods of [3], a direct calculation is given as

S(ejω) =

(
1 − G(ejω)K1(e

jω)

1 − (1 − q)G(ejω)K2(ejω)

)
Sre −

(ejω)G(ejω)K2(e
jω)

1 − (1 − q)G(ejω)K2(ejω)
Sne.

Sre is the frequency characteristics from r to e and Sne is the frequency characteristics
from n to e. r, n, dr are uncorrelated with each other in this paper, and we can obtain

E

{∥∥∥Ẽ∥∥∥2

2

}
=

∥∥∥∥1 − GK1

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ GK2

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
2.

Similarly, we can obtain

E
{
∥Y ∥2

2

}
=

∥∥∥∥ GK1

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ GK2

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
2,

E
{
∥U∥2

2

}
=

∥∥∥∥ K1

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ K2

1 − (1 − q)GK2

∥∥∥∥2

2

σ2
2.

3. Multi-object Tracking Performance with Channel Noise. In this paper, we
want to obtain the optimal tracking error subject to the channel input energy and control
input energy constraints. We denote the multi-objective performance as

J = (1 − ε1 − ε2)E

{∥∥∥Ẽ∥∥∥2

2

}
+ ε1

(
E
{
∥U∥2

2

})
− Γ + ε2

(
E

{∥∥∥Ỹ ∥∥∥2

2

}
− Υ

)
(1)

where 0 ≤ ε1 + ε2 ≤ 1, which represents the trade-off among the optimal tracking error,
the channel input energy and control input energy. Γ is the allowed control input energy,
and Υ is the allowed channel input energy.

The multi-objective tracking performance is measured by the possible minimal tracking
error achievable by all possible linear stabilizing controllers (denoted by K), determined
as

J∗ = inf
K∈K

J (2)

Therefore,

J = (1 − ε1 − ε2)

(∥∥∥∥1 − GK1

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ GK2

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
2

)

+ ε2

(∥∥∥∥ GK1

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ GK2

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
2

)
− ε2Υ

+ ε1

(∥∥∥∥ K1

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ K2

1 + (1 − q)GK2

∥∥∥∥2

2

σ2
2

)
− ε1Γ

(3)

For the rational transfer function (1 − q)G, let its coprime factorization be given by
(1 − q) = NM−1, where N,M ∈ RH∞, and satisfy the Bezout identity MX −NY = 1,
where X, Y ∈ RH∞.

It is well known that every stabilizing compensator K can be characterized by Youla
parameterization [5]

K :=
{
K : K =

[
K1 K2

]
= (X −DN)−1 [ Q Y −DM

]
, Q ∈ RH∞, D ∈ RH∞

}
.
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It is also well known that a non-minimum phase transfer function could factorize a
minimum phase part and an all pass factor N = LzNm,M = BpMm, where Lz and Bp

are the all pass factors, and Nm and Mm are the minimum phase parts. Lz includes all
the right half plane zeros of the plant zi ∈ C+, i = 1, · · · , n, and Bp includes all the right
half plane poles of the plant pj ∈ C+, j = 1, · · · ,m. We consider coprime factorization of

Lz(s) and Bp(s) respectively as Lz(s) =
n∏

i=1

s−zi

s+z̄i
, Bp(s) =

m∏
j=1

s−pj

s+p̄j
.

Therefore, we can get

J = (1 − ε1 − ε2)

(∥∥∥∥1 − NQ

(1 − q)

∥∥∥∥2

2

σ2
1 +

∥∥∥∥N (Y −DM)

(1 − q)

∥∥∥∥2

2

σ2
2

)

+ ε2

(∥∥∥∥ NQ

(1 − q)

∥∥∥∥2

2

σ2
1 +

∥∥∥∥N (Y −DM)

(1 − q)

∥∥∥∥2

2

σ2
2

)
− ε2Υ + ε1

(
∥MQ∥2

2 σ
2
1 + ∥M(Y −DM)∥2

2 σ
2
2

)
− ε1Γ.

(4)

Then, we have

J∗ = inf
D,Q∈RH∞

{(
(1 − ε1 − ε2)

∥∥∥∥1 − NQ

(1 − q)

∥∥∥∥2

2

σ2
1 + ε2

∥∥∥∥ NQ

(1 − q)

∥∥∥∥2

2

σ2
1 + ε1 ∥MQ∥2

2 σ
2
1

)

+

(
ε1 ∥M(Y −DM)∥2

2 σ
2
2 + (1 − ε1)

∥∥∥∥N(Y −DM)

(1 − q)

∥∥∥∥2

2

σ2
2

)}
− ε1Γ − ε2Υ.

It is clear that in order to obtain J∗, Q and D must be appropriately selected.

Theorem 3.1. For given networked systems such as Figure 1, the multi-object perfor-
mance under the channel input energy and control input energy constraints can be ex-
pressed as:

J∗ =
m∑

j=1

m∑
k=1

γjγH
j

pj+p̄k
σ2

2 + A
n∑

i=1

2Re(zi)σ
2
1 − ε2Υ − ε1Γ + A

∥∥∥∥∥∥∥∥∥∥∥

1 − Nm∆−1
0 ∆−H

0 NH
m

(1−q)2√
ε2

1−ε1−ε2

Nm∆−1
0 ∆−H

0 NH
m

(1−q)2√
ε1

1−ε1−ε2

Mm∆−1
0 ∆−H

0 NH
m

(1−q)

∥∥∥∥∥∥∥∥∥∥∥

2

2

σ2
1,

where γj = −2 Re(pj)Λo(pj)N
−1
m (pj)L

−1
z (pj)

∏
k ̸=j

pj+p̄k

pj−pk
, A = (1 − ε1 − ε2).

Proof: Because the Bp and Lz are all pass factors, we can obtain

J∗ = inf
Q∈RH∞

∥∥∥∥∥∥∥∥∥


√

1 − ε1 − ε2

(
L−1

z − NmQ
(1−q)

)
√
ε2

NmQ
(1−q)

√
ε1MmQ


∥∥∥∥∥∥∥∥∥

2

2

σ2
1 − ε2Υ

+ inf
D∈RH∞

∥∥∥∥∥
√
ε1Mm (Y −DM)

√
1 − ε1

Nm(Y −DM)
(1−q)

∥∥∥∥∥
2

2

σ2
2 − ε1Γ.
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By a simple calculation, J∗ can be expressed as

J∗ = inf
Q∈RH∞

∥∥∥∥∥∥∥


√
1 − ε1 − ε2

(
L−1

z − 1 + 1 − NmQ
(1−q)

)
√
ε2

NmQ
(1−q)√

ε1MmQ


∥∥∥∥∥∥∥

2

2

σ2
1 − ε2Υ

+ inf
D∈RH∞

∥∥∥∥∥
[ √

ε1Mm√
1−ε1Nm

(1−q)

]
(Y −DM)

∥∥∥∥∥
2

2

σ2
2 − ε1Γ.

In order to calculate the J∗, we denote

J∗
1 = inf

Q∈RH∞

∥∥∥∥∥∥∥


√
1 − ε1 − ε2

(
L−1

z − 1 + 1 − NmQ
(1−q)

)
√
ε2

NmQ
(1−q)√

ε1MmQ


∥∥∥∥∥∥∥

2

2

σ2
1 (5)

J∗
2 = inf

D∈RH∞

∥∥∥∥∥
[ √

ε1Mm√
1−ε1Nm

(1−q)

]
(Y −DM)

∥∥∥∥∥
2

2

σ2
2 (6)

By a simple calculation, J∗
1 can be expressed as

J∗
1 = inf

Q∈RH∞

∥∥∥∥∥∥∥∥
 √

1 − ε1 − ε2 (L−1
z − 1)

0
0

+


√

1 − ε1 − ε2

(
1 − NmQ

(1−q)

)
√
ε2

NmQ
(1−q)

√
ε1MmQ


∥∥∥∥∥∥∥∥

2

2

σ2
1.

Because

√1 − ε1 − ε2(L
−1
z − 1)

0
0

 is in H⊥
2 , and conversely,


√

1 − ε1 − ε2

(
1 − NmQ

(1−q)

)
√
ε2

NmQ
(1−q)

√
ε1MmQ


is in H2, J

∗
1 can be expressed as

J∗
1 =

∥∥∥∥∥∥
 √

1 − ε1 − ε2(L
−1
z − 1)

0
0

∥∥∥∥∥∥
2

2

σ2
1 + inf

Q∈RH∞

∥∥∥∥∥∥∥∥


√
1 − ε1 − ε2

(
1 − NmQ

(1−q)

)
√
ε2

NmQ
(1−q)

√
ε1MmQ


∥∥∥∥∥∥∥∥

2

2

σ2
1.

In order to calculate J∗
1 , define

J∗
11 =

∥∥∥∥∥∥
 √

1 − ε1 − ε2(L
−1
z − 1)

0
0

∥∥∥∥∥∥
2

2

σ2
1,

J∗
12 = inf

Q∈RH∞

∥∥∥∥∥∥∥∥


√
1 − ε1 − ε2

(
1 − NmQ

(1−q)

)
√
ε2

NmQ
(1−q)

√
ε1MmQ


∥∥∥∥∥∥∥∥

2

2

σ2
1.

It follows by the same argument, and we have J∗
11 = (1 − ε1 − ε2)

n∑
i=1

2 Re(zi)σ
2
1.

By a simple calculation, J∗
12 can be expressed as

J∗
12 = (1 − ε1 − ε2) inf

Q∈RH∞

∥∥∥∥∥∥∥∥
 1

0
0

+


−Nm

(1−q)√
ε2

1−ε1−ε2

Nm

(1−q)√
ε1

1−ε1−ε2
Mm

Q
∥∥∥∥∥∥∥∥

2

2

σ2
1 (7)
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We introduce an inner-outer factorization


−Nm

(1−q)√
ε2

1−ε1−ε2

Nm

(1−q)√
ε1

1−ε1−ε2
Mm

 = ∆i∆o.

To find the optimal Q, introduce ψ
∆
=

[
∆T

i (−s)
I − ∆i∆

T
i (−s)

]
. Then, we have ψT

i
ψi = I,

and it follows that J∗
12 = (1 − ε1 − ε2) inf

Q∈RH∞

∥∥∥∥∥∥∥∥ψ

 1

0
0

+


−Nm

(1−q)√
ε2

1−ε1−ε2

Nm

(1−q)√
ε1

1−ε1−ε2
Mm


Q

∥∥∥∥∥∥∥∥
2

2

σ2
1.

By a simple calculation, we can get

J∗
12 = (1− ε1 − ε2) inf

Q∈RH∞

∥∥∥∥∥∥∆T
i

 1
0
0

+ ∆0Q

∥∥∥∥∥∥
2

2

σ2
1 +(1− ε1 − ε2)

∥∥∥∥∥∥(I − ∆i∆
T
i

) 1
0
0

∥∥∥∥∥∥
2

2

σ2
1.

According to Q ∈ RH∞,

∥∥∥∥∥∥∆T
i

 1
0
0

+ ∆0Q

∥∥∥∥∥∥
2

2

can be made arbitrarily small by prop-

erly choosing Q ∈ RH∞. By an simple calculation, we have

J∗
12 = (1 − ε1 − ε2)

∥∥∥∥∥∥∥∥∥
1 − Nm∆−1

0 ∆−H
0 NH

m

(1−q)2√
ε2

1−ε1−ε2

Nm∆−1
0 ∆−H

0 NH
m

(1−q)2√
ε1

1−ε1−ε2

Mm∆−1
0 ∆−H

0 NH
m

(1−q)

∥∥∥∥∥∥∥∥∥
2

2

σ2
1.

According to J∗
11 and J∗

12, we can obtain J∗
1

J∗
1 = (1 − ε1 − ε2)

n∑
i=1

2 Re(zi)σ
2
1 + (1 − ε1 − ε2)

∥∥∥∥∥∥∥∥∥
1 − Nm∆−1

0 ∆−H
0 NH

m

(1−q)2√
ε2

1−ε1−ε2

Nm∆−1
0 ∆−H

0 NH
m

(1−q)2√
ε1

1−ε1−ε2

Mm∆−1
0 ∆−H

0 NH
m

(1−q)

∥∥∥∥∥∥∥∥∥
2

2

σ2
1.

In order to calculate J∗
2 , we consider following an inner-outer factorization

[ √
ε1Mm√

1−ε1Nm

(1−q)

]
= ΛiΛo where Λi is an inner factor, and Λo is an outer factor.

Therefore, we have J∗
2 = inf

D∈RH∞
∥ΛiΛo(Y −DM)∥2

2 σ
2
2.

Because Λi is an inner factor, and Bp is the all pass factor, J∗
2 can be rewriten J∗

2 =

inf
D∈RH∞

∥∥ΛoY B
−1
p − ΛoDMm

∥∥2

2
σ2

2. Because ΛoY B
−1
p = Γ⊥

1 + Γ1, Γ⊥
1 is in H⊥

2 , Γ1 is in H2,

then J∗
2 = inf

D∈RH∞

∥∥Γ⊥
1 + Γ1 − ΛoDMm

∥∥2

2
σ2

2. Simultaneously, Γ1 − ΛoDMm is in H2, and

it follows that J∗
2 =

∥∥Γ⊥
1

∥∥2

2
σ2

2 + inf
D∈RH∞

∥Γ1 − ΛoDMm∥2
2 σ

2
2.

We can select an appropriate Q, making inf
D∈RH∞

∥Γ1 − ΛoDMm∥2
2 σ

2
2 = 0.

The C+ poles of Γ⊥ are precisely the plant poles pj. Therefore, we apply residue calculus

to obtaining Γ⊥
1 =

m∑
j=1

(
αj

s−pj
Λo(pj)Y (pj)

)
, where αj is the residue of B−1

p evaluated at

s = pj, so αj = 2 Re(pj)
∏
k ̸=j

pj+p̄k

pj−pk
.

According to MX−NY = 1 and M(pj) = 0, we can obtain Y (pj) = −N−1
m (pj)L

−1
z (pj).
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Define γj = −2 Re(pj)Λo(pj)N
−1
m (pj)L

−1
z (pj)

∏
k ̸=j

pj+p̄k

pj−pk
, and it follows that

J∗
2 =

m∑
j=1

m∑
k=1

(
γjγ

H
j

pj + p̄k

)
σ2

2.

According to J∗
1 and J∗

2 , we can obtain J∗

J∗ =
m∑

j=1

m∑
k=1

(
γjγ

H
j

pj + p̄k

)
σ2

2 + A

n∑
i=1

2 Re(zi)σ
2
1 − ε2Υ − ε1Γ

+ A

∥∥∥∥∥∥∥∥∥
1 − Nm∆−1

0 ∆−H
0 NH

m

(1−q)2√
ε2

1−ε1−ε2

Nm∆−1
0 ∆−H

0 NH
m

(1−q)2√
ε1

1−ε1−ε2

Mm∆−1
0 ∆−H

0 NH
m

(1−q)

∥∥∥∥∥∥∥∥∥
2

2

σ2
1.

where A = (1 − ε1 − ε2), which completes the proof.

4. Numerical Example. Consider a linear time-invariant control system model de-
scribed by G(s) = s−k

(s+1)(s−2)
, where k ∈ (1, 4). This plant is non-minimum phase. The

unstable pole is located at p = 2, for any k > 0, and it has a non-minimum phase zero
at z = k. The simulation parameters are as follows: Nm = s+k

(s+2)(s+1)
, Mm = 1, q = 0.5,

ε1 = 0.1, ε2 = 0.4.
The multi-objective optimal performance about networked system with different non-

minimum phase zeros is shown in Figure 2. The multi-objective optimal performance is
obtained by applying two-parameter scheme. It can be observed from Figure 2, the packet
dropout probability is higher, the performance will become worse. It can be also seen from
Figure 2 that the multi-objective optimal performance has been degraded because of the
packet dropouts probability of the communication channel in the feedback control system.
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Figure 2. Networked system with channel noise and packet dropout
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5. Conclusions. The problem of the multi-objective optimal performance with packet
dropouts and channel noise under control input energy and channel input energy con-
straints has been studied in this paper. The network constraints under consideration are
packet dropouts and channel noise. Explicit expression of the multi-objective optimal
performance has been obtained by applying two parameter compensator and inner-outer
factorization. It is shown that the optimal tracking performance depends on the non-
minimum phase zeros and unstable poles of the given plant, as well as the reference in-
put signal, and the packet dropouts probability and channel noise of the communication
channel. The result shows how the packet dropouts probability and channel noise of com-
munication channel may fundamentally constrain a control system’s tracking capability.
An example has been given to illustrate the obtained results.

Future extensions to this work will include nonlinear networked control systems, and
more parameters of communication channel such as bandwidth, network-induced delay
and quantization effect.
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