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Abstract. This study redesigns the gene expression programming (GEP) approach to
generate dispatching rules for the job shop scheduling problems (JSP). Four parame-
ters about JSP are encoded as the terminal set to boost the self-adaptive capability of
the obtained dispatching rules, including the processing time of operations, the number
of remaining unscheduled operations, the sum of jobs’ remaining processing time and a
random numerical constant. Five arithmetic operators are selected as the function set
to formulate the nonlinearity and complexity among these parameters. Utilizing the ge-
netic operators of GEP containing selection, mutation, transposition and recombination,
an optimal functional representation representing dispatching rule is obtained. Mean-
while, an iterative re-start mechanism is combined to escape from the local optimum.
Experimental results with 23 training cases and 7 testing cases show that the obtained
dispatching rule via GEP possesses superiority in searching better solutions, robustness
and flexible adaption to the given problem.
Keywords: Adaptive dispatching rule, Job shop scheduling problem, Gene expression
programming

1. Introduction. Scheduling is one of the most critical issues in the planning and man-
aging of manufacturing processes. One of the most difficult problems in this area is the job
shop scheduling problem (JSP), which has been proved to be an NP-hard problem [1]. JSP
has been investigated via exact method, dispatching rules or meta-heuristic algorithms
[2,3]. The exact methods can guarantee global convergence, but it requires exponentially
increasing computing times as the size of problem increases. Hence, the dispatching rules,
also called heuristic approaches, and meta-heuristic algorithms attract growing attention
of researchers. With respect to meta-heuristic algorithms, it has been computationally
proven that they can find high-quality solutions within reasonable computational time
[4]. However, meta-heuristic algorithms are not convenient to be applied by the manager
in the real enterprise because the solutions from meta-heuristic algorithms must be con-
verted into corresponding orders. On the other hand, the dispatching rules have many
advantages like the ease of implementation, satisfactory performance, low computational
requirement, and flexibility to incorporate domain knowledge and expertise, and hence are
being used more frequently by the industry. Unfortunately, as demonstrated by Huang
and Suer [5], the quality of the solutions by dispatching rules is low due to the lack of flex-
ibility and needs to be improved in matching the specific environments. Gene expression
programming (GEP) is a genetic algorithm in which the individuals are encoded as linear
strings of fixed length which are afterwards expressed as nonlinear entities of different
sizes and shapes [6].

This paper proposes a GEP-based adaptive dispatching rule to solve the JSP with
makespan as the objective function. Basically, the dispatching rules generated by GEP
algorithm are heavily dependent on the problem characteristics and parameters, and vise
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verse result in the self-adaptive capability of the proposed rules to the given problem.
The adopted parameters characterizing the JSP problem include the processing time,
the number of remaining unscheduled operations, and the sum of jobs’ remaining time.
In addition, 30 benchmarks are employed to evaluate the performance of the proposed
approach.

The remainder of the paper is organized as follows. Section 2 describes the JSP problem.
Section 3 details the methodology of producing dispatching rules via gene expression
programming algorithm. Section 4 reports and analyzes corresponding results. In Section
5, a general conclusion is drawn.

2. Problem Statement. There are a set of machines, a set of n (i = 1, 2, . . . , n) jobs
with each job having a set of |Ji| (j = 1, 2, . . . , |Ji|) operations. Solving JSP problem
means to seek for an optimal or near-optimal sequence S = {s|s = 1, 2, . . . , K} of these
K (K =

∑
i |Ji|) operations so as to minimize the completion time of all operations Cmax.

Note that, in the following equations, pij is the processing time of operation Oij on the
predefined machine, mij is the machine predefined to perform Oij, M is a big number,
and Cij represents the completion time of Oij. Yijs equals 1 if Oij is the sth operation in
the sequence and 0 otherwise.

min Cmax, Cmax = max
1≤i≤I,1≤j≤|Ji|

{Cij} (1)

s.t.
∑

s

Yijs = 1, ∀Oij (2)∑
i

∑
j|j≤|Ji|

Yijs = 1, ∀s ∈ S (3)

∑
s

sYijs <
∑

s

sYi,j+1,s, ∀Oij, Oi,j+1, j < |Ji| (4)

Cij + pi′j′ ≤ Ci′j′ + M · (2 − Yijs − Yi′j′s′), ∀Oij, Oi′j′ , s < s′, mij = mi′j′ (5)

Cij − Pij ≤ Ci′j′ − pi′j′ + M · (2 − Yijs − Yi′j′,s+1),∀Oij, Oi′j′ , s < K (6)

The objective function described in Equation (1) is to minimize makespan. For the
constraints, each operation should be performed exactly once and only one task exists
in each position of the sequence in Equations (2) and (3). Equation (4) defines the
precedence relations constraints that each operation must be executed after its precedent
operations have been finished. Equation (5) concerns time sequence constraint that one
operation can start after the earlier one being assigned to the same machine has been
finished. Equation (6) means that the immediate following operation can be started only
after the immediate preceding operation in the sequence has been started.

3. Methodology. Gene expression programming (GEP) is a new technique of evolu-
tionary algorithms for data analysis [6]. It has been successfully applied in symbolic
regression, time series prediction, classification, optimization, etc. [7]. A novel iterative
re-start mechanism is addressed to ensure the global optimum of GEP. The core steps
of the algorithm contain parameter setting, population initialization, selection, mutation,
transposition, recombination, evaluation, and conditional termination.

3.1. Representation. Each GEP chromosome is generated randomly with the gene from
a function set (FS) and a terminal set (TS) at the beginning of the search process. It is
composed of a list of symbols with a fixed length, which can be divided into two parts,
a head and a tail. The head can be any symbol from FS and TS, while the tail contains
only terminals. The choice of proper elements for FS and TS is a crucial step in the
implementation of the learning process and has a significant effect on the learning ability
of GEP [8]. In our GEP system, we define four properties including processing time
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(pt), the number of remaining unscheduled operations (nr), the sum of jobs’ remaining
processing time (sr), and a constant (c). These four properties {pt, nr, sr, c} consist of
the TS.

One of the improvements of GEP over GP and GA is to separate phenotype from
genotype. The genotype and phenotype are mutually dependent and can be transformed
into each other directly [7]. For example, from the K-expression in Figure 1(a), we can
obtain the expression tree and math expression illustrated in Figure 1 with depth-first
search mode.

(a) K-expression (b) Expression Tree (c) Math Expression

Figure 1. Expression tree and math expression for K-expression (a)

3.2. Genetic operators. Genetic operators contain selection, mutation, transposition
and recombination. Roulette-wheel sampling with elitism is selected to generate the next
population. One point mutation and flip mutation are selected. The insertion sequence
transposition and root insertion sequence transposition are applied for each chromosome
[9]. We choose one-point and two-point recombination for two chromosomes.

3.3. Fitness function. If and only if the fitness function is clearly and correctly designed,
the population can be evolved in the predetermined direction [7] and the given problem
can be solved successfully. In our study, a near optimum is expected for the problem. A
mean square error (MSE) in Equation (7) is adopted to evaluate the chromosome of GEP.

f =

√√√√√ s∑
r=1

(pr − tr)
2

s − 1
(7)

where, f denotes the fitness of the chromosome, and pr and tr represent the real makespan
and the target makespan of case r respectively. Here, the target makespan is the lower
bound or the current best solution. We calculate the priority values for each candidate
operation with the math expression, and then schedule the operation with the highest
priority first until the candidate operation set is empty. Thus, the real makespan pr for
each case is obtained.

3.4. The random numerical constant. An extra terminal set is defined to handle the
numerical constant. This set will be chosen to process the genetic operators according
to the given probability. Note that, each element in this extra terminal set is defined
specifically according to the given problem. For example, we select the constant array
{0.1, 2.5}, and then define the extra terminal set as {b, c}. That means b = 0.1, c = 2.5.

3.5. The iterative re-start mechanism. The traditional GEP is easy to converge
prematurely and be trapped into the local optimum. In our GEP system, an iterative
re-start mechanism is applied when the current best solution has not been updated after
several generations. When the number of iterations without improvement reaches to
the maximum number of the pre-set, the iterative re-start mechanism is triggered. The
chromosomes are selected with the given probability and reconstructed randomly from
scratch.
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4. Results and Discussions. We apply 30 benchmarks about JSP (as shown in Table
1) to finding the dispatching rules by the redesigned GEP. Researchers have paid attention
to these famous benchmarks and obtained the current best solutions or the lower bound
(represented by MS) in Table 1. These MS are employed as target makespan in our
approach.

Table 1. The experimental data

SN P J M MS SN P J M MS SN P J M MS SN P J M MS
1 ABZ5 10 10 1234 9 LA05 10 5 593 17 LA14 20 5 1292 25 LA24 15 10 935
2 ABZ6 10 10 943 10 LA06 15 5 926 18 LA16 10 10 945 26 LA25 15 10 977
3 FT06 6 6 55 11 LA08 15 5 863 19 LA17 10 10 784 27 LA26 20 10 1218
4 FT10 10 10 930 12 LA09 15 5 951 20 LA18 10 10 848 28 LA28 20 10 1216
5 LA01 10 5 666 13 LA10 15 5 958 21 LA19 10 10 842 29 LA30 20 10 1355
6 LA02 10 5 655 14 LA11 20 5 1222 22 LA20 10 10 902 30 LA32 30 10 1850
7 LA03 10 5 597 15 LA12 20 5 1039 23 LA22 15 10 927
8 LA04 10 5 590 16 LA13 20 5 1150 24 LA23 15 10 1032
Note: SN, P, M, J, and MS are the abbreviation of serial number, the problem, the total number of
machines, the total number of jobs, and makespan.

4.1. Parameters tuning. It is worth mentioning that some parameters must be prede-
termined before the redesigned GEP are implemented in the JSP problem. After a serial
of preliminary trials, these parameters are confirmed. The population size, the number
of iterations, the head size, the tail size and the constant equal 10, 200, 8, 9 and 55
respectively. One point mutation rate, flip mutation rate, one-point recombination rate,
two-point recombination rate, insertion sequence transposition, root insertion sequence
transposition, the pre-set iterations and the pre-set probability for the iterative re-start
mechanism equal 0.05, 0.05, 0.2, 0.2, 0.15, 0.1, 10 and 0.3 respectively.

4.2. Experimental result. The proposed approach has been programmed in C++ lan-
guage and run on a PC with Intel Core 2 Duo CPU 2.20 GHz processor and 2.00 GB
RAM memory. From Table 2, there is a total number of 30 simulation experiment sets,
which are divided into 2 groups with 23 and 7 cases respectively. All data in Group 1 are
used as a training set to seek for the function expression. And the function expression
of the obtained best individual is applied to the problems in Group 2 so as to check the
validation of the dispatching rules. Each simulation experiment has run 10 times. The

best result over the 10 different runs is
{

+// − pt/ ∗ √ sr nr m sr pt nr pt m sr
}

. Note

that, m is the constant and equals 55. The dispatching rule obtained by the GEP is shown
in Equation (8).

F (pt, nr, sr) =
(
pt −

(
nr ∗

√
sr

)/
55

)/
(pt ∗ sr) + nr (8)

To test the performance of the obtained dispatching rule, we apply this dispatching
rule to calculating the makespan of 30 benchmarks shown in Table 2. Meanwhile, the
results from 8 classical widely-used dispatching rules for these problems are also listed for
comparison. Detailed discussion of these selected rules can be found in reference [10].

We first measure and compare the makespan. As illustrated in Table 2, 24 cases cal-
culated by GEP are superior to other 8 dispatching rules. Specially, 3 of them, LA09,
LA10 and LA14, have reached the lower bound. Meanwhile, we can see that LRM and
MWKR also play a good performance at several cases including FT10, LA01, LA03, and
MWKR finds the lower bound of LA14. In summary, the obtained dispatching rule via
GEP possesses powerful ability in searching better solutions.

The robustness of solutions has a dominant impact especially when the production
parameters are changed such as the number of jobs or operations. Table 2 shows that
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Table 2. The makespan/deviation results by different dispatching rules

Problem LB SPT LPT SSO LSO SRM LRM MWKR SWKR GEP

ABZ5 1234 2509/1.03 2730/1.21 2829/1.29 3186/1.58 3629/1.94 1547/0.25 1451/0.18 3318/1.69 1370/0.11

ABZ6 943 2039/1.16 2557/1.71 2434/1.58 2497/1.65 2617/1.77 1101/0.16 1096/0.16 2418/1.56 1091/0.15
FT06 55 78/0.41 104/0.89 72/0.31 74/0.34 103/0.87 63/0.14 67/0.21 103/0.87 60/0.09
FT10 930 1850/0.99 1916/1.06 1714/0.84 1886/1.02 2021/1.17 1136/0.22 1194/0.28 1790/0.92 1151/0.23
LA01 666 1097/0.64 1200/0.80 1227/0.84 982/0.47 1376/1.06 778/0.16 735/0.10 1489/1.23 775/0.16

LA02 655 1218/0.86 1399/1.13 1143/0.75 1086/0.66 1257/0.92 851/0.30 902/0.38 1217/0.85 901/0.37
LA03 597 915/0.53 1039/0.74 908/0.52 858/0.43 1056/0.77 748/0.25 731/0.22 1066/0.78 791/0.32
LA04 590 1049/0.77 1103/0.87 1115/0.89 1082/0.83 1137/0.92 846/0.43 817/0.38 1333/1.26 716/0.21
LA05 593 931/0.57 977/0.64 892/0.50 899/0.52 994/0.67 630/0.06 612/0.03 1186/1.00 614/0.03

LA06 926 1388/0.50 1618/0.74 1531/0.65 1457/0.57 1496/0.62 974/0.05 1021/0.10 1941/1.09 952/0.02
LA08 863 1263/0.46 1804/1.09 1505/0.74 1414/0.64 1878/1.17 1111/0.28 1101/0.27 1739/1.01 935/0.08
LA09 951 1665/0.75 1828/0.92 1792/0.88 1454/0.53 2063/1.17 1073/0.12 1132/0.19 2012/1.11 951/0.00

LA10 958 1542/0.61 1539/0.60 2144/1.23 1188/0.24 1785/0.86 1049/0.09 1064/0.11 1795/0.87 958/0.00
LA11 1222 2027/0.66 2036/0.66 1888/0.54 1774/0.45 2446/1.00 1387/0.13 1459/0.19 2593/1.12 1229/0.01
LA12 1039 1687/0.62 1634/0.57 1817/0.75 1524/0.46 2144/1.06 1251/0.20 1176/0.13 2089/1.01 1103/0.06
LA13 1150 1872/0.63 2505/1.17 1919/0.67 1797/0.56 2546/1.21 1306/0.13 1277/0.11 2388/1.07 1167/0.01

LA14 1292 2132/0.65 1889/0.46 2157/0.67 1637/0.27 2305/0.78 1345/0.04 1292/0.00 2400/0.85 1292/0.00
LA16 945 1921/1.03 1945/1.05 1919/1.03 1980/1.09 2557/1.70 1263/0.33 1254/0.32 2530/1.67 1144/0.21
LA17 784 1608/1.05 1759/1.24 1811/1.31 1635/1.08 2450/2.12 960/0.22 1004/0.28 2246/1.86 898/0.14
LA18 848 1867/1.20 2305/1.71 1789/1.11 1379/0.62 2479/1.92 1095/0.29 990/0.16 2386/1.81 990/0.16

LA19 842 2554/2.03 2296/1.72 2279/1.71 1934/1.29 2807/2.33 1093/0.29 1089/0.29 2680/2.18 1048/0.24
LA20 902 1975/1.19 2272/1.52 2163/1.39 1619/0.79 2569/1.84 1170/0.29 1117/0.23 2814/2.12 974/0.08
LA22 927 2254/1.43 2695/1.91 2162/1.33 2059/1.22 3475/2.75 1261/0.36 1230/0.32 3399/2.66 1202/0.29
LA23 1032 2660/1.58 3223/2.12 3066/1.97 2866/1.77 3804/2.68 1232/0.19 1226/0.18 3811/2.69 1169/0.13

LA24 935 2674/1.86 2950/2.15 2550/1.72 2435/1.60 3799/3.06 1199/0.28 1254/0.34 3621/2.87 1180/0.26
LA25 977 2727/1.79 3545/2.63 2460/1.52 2574/1.63 3269/2.34 1264/0.29 1305/0.33 3793/2.88 1240/0.27
LA26 1218 3956/2.25 3423/1.81 3720/2.05 3326/1.73 4807/2.94 1485/0.21 1571/0.29 4874/3.00 1508/0.23

LA28 1216 4027/2.31 3386/1.78 3130/1.57 3276/1.69 4597/2.78 1730/0.42 1724/0.41 4758/2.91 1537/0.26
LA30 1355 3323/1.45 3703/1.73 3420/1.52 3081/1.27 4991/2.68 1672/0.23 1570/0.16 4616/2.40 1751/0.29
LA32 1850 4799/1.59 6204/2.35 5774/2.12 4661/1.52 7313/2.95 2449/0.32 2224/0.20 7858/3.24 2160/0.16

the deviation value for each case via GEP is lower than 0.32 and the total deviation via
GEP is 4.57. Both of them are the minimum among all dispatching rules. Especially,
the average deviation (0.15) via GEP shows that the prediction value is closer to the
lower bound. We also notice that the total deviation and the average deviation of LRM
and MWKR take the second place, but the deviation by these two dispatching rules is
extremely large sometimes, such as the LA04, LA28. The result of deviation demonstrates
that the obtained dispatching rules by GEP is robust.

To measure the self-adaptive capability of the obtained dispatching rule by GEP, we
discuss the parameters utilized by all dispatching rules. SPT and LPT only consider
the processing time of operations. SSO, LSO, SWKR and MWKR focus on the number
of jobs with remaining work. SRM and LRM take account of the jobs with remaining
processing time. Different from these dispatching rules, the obtained dispatching rule by
GEP comprises not only a variable numerical constant but also the above three factors:
the processing time of operations, the number of jobs with remaining work and the jobs
with remaining processing time. What is more, it states the functional relationship among
these factors. Employing multiple parameters and functional representation enables the
obtained dispatching rule by GEP to be more adaptive to the given problem and thus has
the potential of finding the best solutions constantly and steadily.

5. Conclusions. In this paper, we used the GEP to find the dispatching rule for solving
the JSP with the makespan criteria. Firstly, we define four properties including process-
ing time, the number of remaining unscheduled operations, the sum of jobs’ remaining
processing time and a constant, to state the properties of JSP. Then, the terminal set of
GEP takes these four properties as the elements. We also select five basic arithmetic oper-
ators as the function set. Secondly, four genetic operators, including selection, mutation,
transposition and recombination, are utilized to evolve the individual. Especially, the
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random numerical constant and the iterative re-start mechanism are applied to enhanc-
ing the search space and the population diversity. Finally, 30 well-known benchmarks are
selected to test the performance of the dispatching rule via GEP. The main conclusions
are as follows.

(1) The obtained dispatching rule via GEP possesses powerful ability in searching better
solutions since 24 cases are superior to other 8 classical dispatching rules.

(2) The obtained dispatching rule by GEP is robust since the deviation is low.
(3) The obtained dispatching rule by GEP owns self-adaptive capability since it com-

prises a variable numerical constant and three factors about the JSP problem.

Acknowledgment. This research is supported by the National Natural Science Foun-
dation of China under Grant No. 51305311 and No. 51275366, the Specialized Research
Fund for the Doctoral Program of Higher Education of China No. 20134219110002 and
China Postdoctoral Science Foundation No. 2013M542073.

REFERENCES

[1] Q. Ren and Y. P. Wang, A new hybrid genetic algorithm for job shop scheduling problem, Computers
& Operations Research, vol.39, pp.2291-2299, 2012.

[2] R. Zhang and C. Wu, Bottleneck machine identification based on optimization for the job shop
scheduling problem, ICIC Express Letters, vol.2, no.2, pp.175-180, 2008.

[3] J. Li and T. Munehisa, Genetic algorithm using the inhomogeneous Markov chain for job shop
scheduling problem, ICIC Express Letters, vol.9, no.2, pp.501-509, 2015.

[4] T. C. Chiang and L. C. Fu, Using dispatching rules for job shop scheduling with due date-based
objectives, International Journal of Production Research, vol.45, no.14, pp.3245-3262, 2007.

[5] J. Huang and G. A. Suer, A dispatching rule-based genetic algorithm for multi-objective job shop
scheduling using fuzzy satisfaction levels, Computers & Industrial Engineering, vol.86, pp.29-42,
2015.

[6] C. Ferreira, Gene expression programming: A new adaptive algorithm for solving problems, Complex
Systems, vol.13, no.2, pp.87-129, 2001.

[7] Y. Yang, X. Li, L. Gao and X. Shao, Modeling and impact factors analyzing of energy consumption
in CNC face milling using GRASP gene expression programming, The International Journal of
Advanced Manufacturing Technology, 2015.

[8] L. Nie, L. Gao, P. Li and X. Li, A GEP-based reactive scheduling policies constructing approach
for dynamic flexible job shop scheduling problem with job release dates, Journal of Intelligence
Manufacturing, vol.24, pp.763-774, 2013.

[9] C. Ferreira, Gene expression programming in problem solving, The 6th Online World Conference on
Soft Computing in Industrial Applications, pp.10-24, 2001.

[10] S. Nguyen, M. Zhang, M. Johnston and K. C. Tan, A computational study of representations in
genetic programming to evolve dispatching rules for the job shop scheduling problem, IEEE Trans.
Evolutionary Computation, vol.17, no.5, pp.621-639, 2013.


