
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 4, April 2016 pp. 929–934

NEURAL NETWORK-BASED ADAPTIVE TRACKING CONTROL
FOR PERMANENT MAGNET SYNCHRONOUS MOTORS

WITH IRON LOSS

Wei Li, Yumei Ma, Jinpeng Yu, Xiaoling Wang and Lichao Liu

College of Automation Engineering
Qingdao University

No. 308, Ningxia Road, Qingdao 266071, P. R. China
yjp1109@hotmail.com

Received October 2015; accepted January 2016

Abstract. This paper focuses on the problem of neural networks (NNs)-based adaptive
backstepping control for permanent magnet synchronous motors (PMSMs) with iron loss.
Based on backstepping technique, an adaptive neural network control method is proposed
by using neural network systems to approximate unknown nonlinearities of permanent
magnet synchronous motor drive system with uncertainty parameters and load torque
disturbance. The proposed adaptive neural network controllers guarantee that the tracking
error converges to a small neighborhood of the origin. Finally, the simulation results
illustrate the effectiveness of the proposed control scheme.
Keywords: Permanent magnet synchronous motor, Iron loss, Adaptive control, Neural
networks, Backstepping, Nonlinear system

1. Introduction. Permanent magnet synchronous motors (PMSMs) have been widely
used in many industrial control fields due to its high power density, high reliability and
long life over other kinds of motors. However, it is still a challenging problem to control
PMSM to get the perfect dynamic performance because its dynamic model is usually mul-
tivariable, coupled and highly nonlinear. Especially, during the actual production process,
the iron loss [1] varies with both synchronous frequency and magnetic flux of the PMSMs,
and neglecting the iron loss can lead to serious error. Therefore, the main disadvantage
of the motor drive system is that PMSMs need more complex controllers for high perfor-
mance industrial applications, and taking iron loss into account has an important effect on
improving the position tracking performance of the PMSMs. The control strategies based
on recent modern control theories such as backstepping control [2], sliding mode control
[3] and other control methods [4] are put forward to meet high performance application re-
quirements of industrial applications. The backstepping-based adaptive control technique
has become one of the most popular nonlinear control approaches because of its ability
to clear up the influence of the uncertain parameters. The most appealing point of it is
to use the virtual control variable to make the original high order system simple. Thus,
the final control outputs can be derived systematically through the suitable Lyapunov
functions. Neural network (NN) approximation [5] method has attracted great attention
in PMSM drive system with iron loss because of its inherent capability for modeling and
controlling highly uncertain, nonlinear and complex systems.

This paper is based on the dynamic mathematical model of PMSM with iron loss and
designs adaptive NN controllers to realize the position tracking control. NN systems are
employed to approximate the nonlinearities. And the adaptive technique and backstep-
ping are used to construct NN controllers. The simulation results show that the adaptive
NN control guarantees that PMSMs servo drives have a good tracking performance [6]
even with the unknown parameters and load disturbances.
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The model of PMSM drive system with iron loss is described in Section 2. Then the
controller design of PMSM system with iron loss is developed in Section 3. And its stability
is analyzed in Section 4. The simulation results of the PMSM position control system are
given in Section 5. Finally, Section 6 draws some conclusions.

2. Modeling of PMSM Drive System. The mathematical model of PMSM drive
system with iron loss can be described in the well-known (d-q) frame as follows [7]:

dΘ
dt

= ω, dω
dt

= npλPM
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(1)

where: Θ, ω, np, J , TL denote the rotor position, rotor angular velocity, pole pair, rotor
moment of inertia and load torque. id and iq stand for the d-q axis currents. ud and
uq are the d-q axis voltages. Ld and Lq are the stator inductors. Lld and Llq are the
leakage inductance. Lmd and Lmq are the magnetic inductance. R1 and Rc are the stator
resistance and iron loss resistance. λPM is the excitation flux.

For simplicity, the following notations are introduced:
x1 = Θ, x2 = ω, x3 = ioq, x4 = iq, x5 = iod, x6 = id,

a1 = npλPM , a2 = np(Lmd − Lmq), b1 = Rc/Lmq, b2 = npLd/Lmq,

b3 = −npλPM/Lmq, b4 = −R1/Llq, b5 = Rc/Llq, c1 = 1/Llq

(2)

By using these notations, the dynamic model can be described as follows:{
ẋ1 = x2, ẋ2 = (a1x3 + a2x3x5 − TL)/J, ẋ3 = b1x4 − b1x3 + b2x2x5 + b3x2,

ẋ4 = b4x4 + b5x3 + c1uq, ẋ5 = b1x6 − b1x5 − b2x2x3, ẋ6 = b4x6 + b5x5 + c1ud

(3)

In this paper, the radial basis function RBF NN [8] will be used to approximate the
unknown continuous function ϕ(z) : Rq → R as φ̂(z) = ϕ∗T P (z), where z ∈ Ωz ⊂ Rq is
the input vector with q being NN input dimension, ϕ∗ = [φ∗

1, . . . , φ
∗
n]T ∈ Rn is the weight

vector with n > 1 being the NN node number, and P (z) = [p1(z), . . . , pn(z)]T ∈ Rn

is the basis function vector with pi(z) chosen as the commonly used Gaussian function
in the following form: pi(z) = exp

[
−(z − νi)

T (z − νi)/q
2
i

]
, i = 1, 2, . . . , n, where νi =

[νi1, . . . , νiq]
T is the center of the receptive field and qi is the width of the Gaussian function.

It has been shown that, for a given scalar ε > 0, by choosing sufficiently large l, the RBF
NN can approximate any continuous function over a compact set Ωz ∈ Rq to an arbitrary
accuracy as φ(z) = ϕT P (z) + δ(z), ∀z ∈ Ωz ⊂ Rq, where δ(z) is the approximation
error satisfying |δ(z) ≤ ε| and ϕ is an unknown ideal constant weight vector, which is an
artificial quantity required for analytical purpose. Typically, ϕ is chosen as the value of

ϕ∗ that minimizes |δ(z)| for all z ∈ Ωz, φ := arg min
φ∗∈Rn

{
sup
z∈Ωz

|ϕ(z) − φ∗T P (z)|
}

.

3. Adaptive Neural Network Controllers Design with Backstepping Technique.
In this section, we will design controllers for the PMSMs based on backstepping.

Step 1: For the reference signal xd, define the tracking error variable as z1 = x1 − xd.
From Equation (1), choose a Lyapunov function candidate as V1 = z2

1/2, and the time
derivative of V1 is computed by V̇1 = z1ż1 = z1(x2 − ẋd). Construct α1 = −k1z1 + ẋd,
with ki > 0 (i = 1, 2, 3, 4, 5, 6) being design parameters and z2 = x2 − α1. Then, V̇1 can
be written as V̇1 = −k1z

2
1 + z1z2.

Step 2: Differentiating z2 gives ż2 = (a1x3 + a2x3x5 − TL)/J − α̇1. Choose the Lya-
punov function candidate as V2 = V1 + Jz2

2/2.
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Remark 3.1. In this paper, due to the parameters TL being bounded in practice system,
assuming its upper bound is d > 0, which is an unknown constant, namely, 0 ≤ TL ≤ d.
Obviously, −z2TL ≤ 1

2ε2
1
z2
2 + 1

2
ε2
1d

2, where ε1 is an arbitrary small positive constant.

Then, the time derivative of V2 satisfies V̇2 = −k1z
2
1 + z2(a1x3 + f2) + 1/2ε2

1d
2, where

f2(Z) = z1 + a2x3x5 − Jα̇1 + z2/2ε
2
1 and Z = [x1, x2, x3, x4, x5, x6, xd, ẋd]. According to

the RBF NN approximation property, for given ε2 > 0, there exists an RBF NN ϕT
2 P2(Z)

such that f2(Z) = ϕT
2 P2(Z) + δ2(Z), where δ2(Z) is the approximation error satisfying

|δ2| ≤ ε2. Then, we can get z2f2 ≤ z2
2 ∥ϕ2∥2 P T

2 P2/2l
2
2 + (l22 + z2

2 + ε2
2) /2.

Construct α2 =
(
−k2z2 − 1

2
z2 − 1

2l22
z2θ̂P

T
2 P2

)
/a1, where θ̂ is the estimation of the

unknown constant θ which will be specified later and define z3 = x3 − α2, with li (i =
2, 3, 4, 6) being positive constants.

V̇2 ≤ −
2∑

i=1

kiz
2
i + a1z2z3 +

1

2l22
z2
2

(
∥ϕ2∥2 − θ̂

)
P T

2 P2 +
1

2

(
l22 + ε2

2 + ε2
1d

2
)

(4)

Step 3: Differentiating z3 obtains ż3 = b1x4 − b1x3 + b2x2x5 + b3x2 − α̇2. Choosing the
Lyapunov function candidate as V3 = V2 + z2

3/2, the time derivative of V3 is given by

V̇3 ≤ −
2∑

i=1

kiz
2
i +

1

2l22
z2
2

(
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)
P T
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2

(
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2 + ε2
1d

2
)

+ z3(b1x4 + f3) (5)

where f3(Z) = a1z2 − b1x3 + b2x2x5 + b3x2 − α̇2 = ϕT
3 P3(Z) + δ3(Z). Similarly, for given

|δ3| ≤ ε3, ε3 > 0, we can obtain z3f3 ≤ z2
3 ∥ϕ3∥2 P T

3 P3/2l
2
3 + (l23 + z2

3 + ε2
3) /2. Then,

construct α3 =
(
−k3z3 − 1

2
z3 − 1

2l23
z3θ̂P

T
3 P3

)
/b1. By using α3, with z4 = x4 − α3, it can

be obtained that

V̇3 ≤ −
3∑

i=1

kiz
2
i + b1z3z4 +

3∑
i=2

1

2l2i
z2

i

(
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)
P T

i Pi +
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1

2

(
l2i + ε2

i

)
+

1

2
ε2
1d

2 (6)

Step 4: Differentiating z4 obtains ż4 = b4x4 + b5x3 + c1uq − α̇3. At this step, we will
construct the control law uq. Choosing V4 = V3 + z2

4/2, then V4 is computed by

V̇4 = V̇3 + z4ż4 = V̇3 + z4(f4 + c1uq) (7)

where f4(Z) = c1x4 + c2x2x3 = ϕT
4 P4(Z) + δ4(Z). For given |δ4| ≤ ε4, ε4 > 0, we can get

z4f4 ≤ z2
4 ∥ϕ4∥2 P T

4 P4/2l
2
4 +

(
l24 + z2

4 + ε2
4

)
/2 (8)

Construct the control law uq as

uq =
1

c1

(
−k4z4 −

1

2
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1

2l24
z4θ̂P

T
4 P4

)
(9)

Furthermore, by using (9), it can be verified easily that

V̇4 ≤ −
4∑
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kiz
2
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1
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)
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Step 5: Define the tracking error variable as z5 = x5, so ż5 = ẋ5. Then, define
ż6 = ẋ6 − α4. Choose the Lyapunov function candidate as V5 = V4 + z2

5/2. Differentiate
V5, and construct α4 = (−k5z5 + b1x5 + b2x2x3)/b1. By using α4, V̇5 can be expressed as

V̇5 ≤ −
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Step 6: At this step, we will construct the control law ud. To this end, choose the
Lyapunov function candidate as V6 = V5 + z2

6/2. Then the derivative of V6 is given by

V̇6 ≤ −
5∑

i=1

kiz
2
i +

∑
i=2,3,4

1
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i

(
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)
+

1

2
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2 + z6(f6 + c1ud)

where f6(Z) = b1z5 + b4x6 + b5x5 − α̇4. Similarly, for given |δ6| ≤ ε6, ε6 > 0, we can get

z6f6(Z) ≤ z2
6 ∥ϕ6∥2 P T

6 P6/2l
2
6 +

(
l26 + z2

6 + ε2
6

)
/2 (12)

Now, construct the control law ud as

ud =
1

c1

(
−k6z6 −

1

2
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1

2l26
z6θ̂P

T
6 P6

)
(13)

Define θ = max
{
∥ϕ2∥2 , ∥ϕ3∥2 , ∥ϕ4∥2 , ∥ϕ6∥2}. By using (13), it can be verified easily

that

V̇6 ≤ −
6∑

i=1

kiz
2
i +

∑
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1
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i
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)
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Introduce variable as θ̃ = θ̂ − θ, and choose the Lyapunov function candidate as V =
V6 + θ̃2/2r1, where r1 and m1 are positive constants. By differentiating V , one has

V̇ ≤ −
6∑

i=1

kiz
2
i +

∑
i=2,3,4,6

1

2

(
l2i + ε2

i

)
+

1

2
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2 +
1
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[
−

∑
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z2

i P
T
i Pi +

˙̂
θ

]
(15)

The corresponding adaptive law is chosen as
˙̂
θ =

∑
i=2,3,4,6

r1

2l2i
z2

i P
T
i Pi − m1θ̂.

4. Stability Analysis of PMSM Position Control. Lyapunov stability theorem is

used to analyze stability of PMSM position system in this paper. Substituting
˙̂
θ into

V̇ , and for the term −θ̃θ̂, one has −θ̃θ̂ ≤ −0.5θ̃2 + 0.5θ2. Consequently, by using this
inequality, V̇ can be rewritten in the following form

V̇ ≤ −
6∑

i=1

kiz
2
i +

∑
i=2,3,4,6

1

2

(
l2i + ε2

i

)
+

1

2
ε2
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2 +
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2r1

θ̃2 − m1

2r1

θ2 ≤ −aV + b (16)

where a = min{2k1, 2k2/J, 2k3, 2k4, 2k5, 2k6,m1}, b =
∑

i=2,3,4,6

1
2
(l2i + ε2

i ) +
ε2
1d2

2
+ m1θ2

2r1
.

Then, (16) implies that V (t) ≤ (V (t0) − b/a)e−a(t−t0) + b/a ≤ V (t0) + b/a,∀t ≥ t0.

All zi (i=1, . . . , 6), θ̃ belong to the compact set Ω=
{(

zi, θ̃
)
|V ≤ V (t0) + b/a,∀t ≥ t0

}
.

Namely, all the signals in the closed-loop system are bounded. From V (t), we have
lim
t→∞

z2
1 ≤ 2b/a. By the definitions of a and b, we can set r1 large enough to get a small

tracking error, with li and εi small enough after giving the parameters ki and m1.

5. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulations are performed to evaluate the performance of closed-loop system by us-
ing Matlab/Simulink. The motor parameters of the PMSMs with iron loss are: J =
0.002Kgm2, R = 2.21Ω, Rc = 200Ω, V pm = 0.0844, Lld = 0.00977H, Llq = 0.00177H,
Lmq = 0.008H, Lmd = 0.007H, np = 3. The RBF NN is chosen in the following way. Then,
adaptive neural network controllers are used to control the PMSMs. The control param-
eters are chosen as follows: k1 = 300, k2 = 160, k3 = 200, k4 = 200, k5 = 400, k6 = 400,
r1 = 0.05, m1 = 0.005, l2 = l3 = l4 = l6 = 2.5. The simulation is carried out under the
zero initial condition for the PMSMs. Give the signals: xd=0.5∗ sin(4∗ t)+0.3∗ sin(2∗ t),
TL = 1.5N · m, 0 ≤ t ≤ 1; TL = 3N · m, t ≥ 1.
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Figure 1 shows the reference signals x1 and xd. Figure 2 shows the error curve. It
can be observed from Figure 1 and Figure 2 that x1 and xd are mostly overlapped from
the very beginning of the simulation, so the system can track the given reference signal

Figure 1. Position curve

Figure 2. Error curve

Figure 3. Voltage uq curve
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Figure 4. Voltage ud curve

quickly and accurately. Figure 3 and Figure 4 show the trajectories of uq and ud. It can
be seen that the controllers are bounded. From the above simulation results, it is clearly
seen that the proposed controllers can track the reference signal quite well even under
parameter uncertainties and load torque disturbance.

6. Conclusions. Based on backstepping technique, an adaptive NN control method is
designed to control PMSMs with iron loss. The proposed controllers are able to overcome
the problem of “explosion of complexity” inherent in the traditional backstepping design.
And the designed controllers guarantee that the system can track the given desired signals
quickly and accurately. Simulation results testify its effectiveness in the PMSM drive
system with iron loss. In the future work, we will focus on the practical application of
the proposed control algorithm.
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