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Abstract. Multitarget tracking (MTT) is a popular topic in various surveillance sys-
tems. To deal with imprecise estimations of the existing cardinalized probability hypothesis
density (CPHD) filter, an improved filter is presented in this paper. First the limitations
of the standard CPHD filter are discussed. Afterwards employing the novel lemmas on
weight optimization, we design the proposed CPHD filter. Simulation results have been
carried out to confirm the validity of the proposed CPHD filter.
Keywords: Multitarget tracking, Weight optimization, Probability hypothesis density,
Particle

1. Introduction. Multitarget tracking (MTT) is to jointly estimate the number of tar-
gets and their state from noise-corrupted measurements [1]. By modelling targets and
measurements as the random finite set (RFS), the MTT is rigorously formulated in the
Bayesian filtering framework. However, the Bayes recursion is computationally intractable
owing to complex multi-integration [2]. To alleviate computational intractability, Mahler
proposed the famous cardinalized probability hypothesis density (CPHD) recursion in
2006.

Recently many articles with respect to the CPHD filter have been reported in important
academic periodicals. Based on the Gaussian mixture (GM) solution, a CPHD filter was
developed for linear Gaussian assumption in [3]. Then a CPHD filter in [4] was presented
to deal with nonlinear and non-Gaussian problem by the sequential Monte Carlo (SMC)
method. In [5] an extension of the CPHD filter was presented to distinguish the survival
and newborn targets. However, the mentioned methods have unstable target number es-
timations. Therefore, [6] depicted a new CPHD filter, where the time-updated cardinality
distribution was exact and the estimated number of targets was rectified. Lately an im-
proved GM implementation of the CPHD filter in [7] was proposed to minimize the effect
of estimation errors. Nevertheless both [6] and [7] are still restricted to linear Gaussian
assumption, which lack universality in actual applications to a certain extent.

In this paper, an improved CPHD filter for nonlinear and non-Gaussian system is
presented. We propose two lemmas on weight optimization to overcome unstable number
estimations by balancing the number of undetected targets and that of false alarms. The
rest of this note is organized as follows. In Section 2, the standard CPHD filter is discussed.
Section 3 presents the principle and SMC implementation of the proposed CPHD filter.
In Section 4, the numerical simulation evaluates tracking performance of the proposed
filter. Section 5 draws conclusions by providing the future work.
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2. The Standard CPHD Filter. The SMC implementation of the CPHD filter is to
propagate a particle set representing the posterior probability hypothesis density (PHD)
and the posterior cardinality distribution. It contains four steps: initialization, time-
update, measurement-update and state estimation.
Step 1. Initialization. Assume χ is the particle number per target, N0 is the expected
number of targets, δ(·) denotes the Dirac Delta function, the initial PHD D0(x) and the

initial cardinality distribution ρ0(n) are approximated by the particles x
(i)
0 and weights

w
(i)
0 = χ−1

D0(x) =

L0∑
i=1

w
(i)
0 δ
(
x − x

(i)
0

)
(1)

ρ0(n) = Cn
L0

χ−n
(
1 − χ−1

)L0−n
(2)

where L0 = χN0 is the total number of particles and Cn
L0

is the binomial coefficient.
Step 2. Time update. The PHD Dk−1(x) at scan k − 1 can be approximated by the

particle system
{

w
(i)
k−1, x

(i)
k−1

}Lk−1

i=1

Dk−1(x) =

Lk−1∑
i=1

w
(i)
k−1δ

(
x − x

(i)
k−1

)
(3)

where Lk−1 is the number of particles, and the sum of weights Nk−1 =
∑Lk−1

i=1 w
(i)
k−1 equals

the expected number of targets.
The time-updated PHD Dk|k−1(x) and its cardinality distribution ρk|k−1(n) are

Dk|k−1(x) =

Lk−1∑
i=1

w
(i)
S,k|k−1δ

(
x − x

(i)
S,k|k−1

)
+

LB,k∑
i=1

w
(i)
B,kδ

(
x − x

(i)
B,k

)
(4)

ρk|k−1(n)

=
n∑

j=0

ρB,k(n − i)
∞∑
l=i

C l
i

⟨
p

(1:Lk−1)
S,k , wk−1

⟩i ⟨
1 − p

(1:Lk−1)
S,k , wk−1

⟩l−i

ρk−1(l)/⟨1, wk−1⟩i
(5)

where ρB,k(·) is the cardinality distribution of newborn targets, LB,k is the number of

newborn-target particles, ⟨·, ·⟩ denotes the inner product. Assume pS,k

(
x

(1)
k−1

)
is the

probability of survival targets, [·]T denotes the transposition matrix, and we have

p
(1:Lk−1)
S,k =

[
pS,k

(
x

(1)
k−1

)
, · · · , pS,k

(
x

(Lk−1)
k−1

)]T
(6)

wk−1 =
[
w

(1)
k−1, · · · , w

(Lk−1)
k−1

]T
(7)

Let qk(·|xk−1, Zk) and bk

(
x

(i)
B,k

∣∣, Zk

)
be the proposal density of survival targets and

newborn targets; the survival-target particles and newborn-target particles in (4) are

x
(i)
S,k|k−1 ∼ qk

(
·
∣∣x(i)

k−1, Zk

)
, i = 1, · · · , Lk−1 (8)

x
(i)
B,k ∼ bk(·|, Zk), i = 1, · · · , LB,k (9)

Considering the Markov transition probability of survival targets fk|k−1(x|·) and the
PHD of newborn targets γk(·), we have the time-updated weights

w
(i)
k|k−1 =

 w
(i)
S,k|k−1 =pS,k

(
x

(i)
k−1

)
fk|k−1

(
x

(i)
S,k|k−1

∣∣x(i)
k−1

)
w

(i)
k−1

/
qk

(
x

(i)
S,k|k−1

∣∣x(i)
k−1, Zk

)
, i=1, · · · , Lk−1

w
(i)
B,k =γk

(
x

(i)
B,k

)/
LB,kbk

(
x

(i)
B,k

∣∣, Zk

)
, i=1, · · · , LB,k

(10)
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where w
(i)
S,k|k−1 and w

(i)
B,k are the weights for survival particles and newborn particles.

Step 3. Measurement update. The measurement-updated PHD Dk(x) and its cardi-
nality distribution ρk(n) at scan k are

Dk(x) =

Lk−1+LB,k∑
i=1

w
(i)
k δ
(
x − x

(i)
k

)
(11)

ρk(n) = Υ0
k

[
wk|k−1; Zk

]
(n)ρk|k−1(n)

/ ⟨
Υ0

k

[
wk|k−1; Zk

]
(n), ρk|k−1(n)

⟩
(12)

Subsequently the measurement-updated equation for weights w
(i)
k can be written as

w
(i)
k =

(
1 − pD,k

(
x

(i)
k

)) ⟨Υ1
k

[
wk|k−1; Zk

]
(n), ρk|k−1(n)

⟩⟨
Υ0

k

[
wk|k−1; Zk

]
(n), ρk|k−1(n)

⟩w(i)
k|k−1︸ ︷︷ ︸

undetected component

+
∑
z∈Zk

gk

(
z|x(i)

k

)
pD,k

(
x

(i)
k

) ⟨1, Ck⟩
Ck(z)

⟨
Υ1

k

[
wk|k−1; Zk − {z}

]
(n), ρk|k−1(n)

⟩⟨
Υ0

k

[
wk|k−1; Zk

]
(n), ρk|k−1(n)

⟩ w
(i)
k|k−1︸ ︷︷ ︸

detected component

(13)
where Ck(·) is the PHD of clutters, pD,k(·) is the detection probability of sensors. Define
the cardinality distribution of clutters pC,k(·) and the elementary symmetric function ej(·);
the related parameters in (12) and (13) are given by

Υn
k

[
wk|k−1; Zk

]
(n)

=
min(|Zk|,n)∑

i=0

 (|Zk| − i)!pC,k(|Zk| − i)P n
j+u

·
⟨
1 − p

(1:Lk−1)
D,k , wk|k−1

⟩n−i−u

ei

(
Λk

(
wk|k−1, Zk

))
/⟨

1, wk|k−1

⟩n (14)

Λk

(
wk|k−1, Zk

)
=

{⟨
wk|k−1, ⟨1, Ck⟩

[
gk

(
z
∣∣x(1)

k

)
pD,kx

(1)
k , · · · , gk

(
z
∣∣x(Lk|k−1)

k

)
pD,kx

(Lk|k−1)

k

]T /
Ck(z)

⟩
: z ∈ Zk

}
(15)

p
(1:Lk−1)
D,k =

[
pD,k

(
x

(1)
k−1

)
, · · · , pD,k

(
x

(Lk−1)
k−1

)]T
(16)

wk|k−1 =
[
w

(1)
k|k−1, · · · , w

(Lk−1)

k|k−1

]T
(17)

Then the expected number of targets is

Ñk =

Lk−1+LB,k∑
i=1

w
(i)
k (18)

We resample Lk = χÑk particles from
{

w
(i)
k , x

(i)
k

}Lk−1+LB,k

i=1
, and obtain

{
w

(i)
k , x

(i)
k

}Lk

i=1
.

Step 4. State estimation. We estimate the number of targets using maximum a pos-
teriori method

N̂k = arg maxn ρk(n) (19)

where N̂k means the selected posterior PHDs m
(i1)
k , · · · , m

(
iN̂k

)
k corresponding to the high-

est weights w
(i1)
k , · · · , w

(
iN̂k

)
k . Then the estimated state of targets can be written as

X̂k =

{
m

(i1)
k , · · · ,m

(
iN̂k

)
k

}
(20)
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Remark 2.1. The random false alarms are approximated by newborn particles. Once a
clutter appears around the true track, the target will be interfered. All newborn particles
for newborn targets and false alarms would lead to overestimated number. In general,

there is 1− pD,k

(
x

(i)
k|k−1

)
> 0 when pD,k

(
x

(i)
k|k−1

)
< 1. The PHD would be discarded if the

sensor cannot collect target-originated measurement and only the undetected component
is in (13). The detected component does not concentrate on the true target but moves
proportionally to other targets. If a clutter-originated measurement near the track is
similar to the value of newborn particles, the increasing weight would lead to unreliable
number estimates. Some false alarms are mistaken for true targets when the variance of
clutters is small. Although the occurrence probability is small, the standard CPHD filter
still employs many newborn particles to look for targets, which causes inaccurate number
estimates.

3. The Proposed CPHD Filter. To pave the way towards the proposed CPHD filter,
we present two lemmas on weights optimization.

Lemma 3.1. Assume µ is the weight threshold, the optimized weights w
(i)
m,k are

w
(i)
m,k =


w

(i)
S′,k =

(
1 +

LB,k∑
i=1

(
w

(i)
B,k − w

(i)
B′,k

)/ Lk−1∑
i=1

w
(i)
S,k

)
w

(i)
S,k, i = 1, · · · , Lk−1

w
(i)
B′,k =

{
µ, w

(i)
B,k ≥ µ

w
(i)
B,k, w

(i)
B,k < µ

, i = 1, · · · , LB,k

(21)

where w
(i)
S′,k and w

(i)
B′,k are optimized weights for survival particles and newborn particles.

Proof: We assign excess weights to survival particles when w
(i)
B,k ≥ µ. Then the sum

of w
(i)
m,k is

Lk−1+LB,k∑
i=1

w
(i)
m,k =

Lk−1∑
i=1

w
(i)
S′,k +

LB,k∑
i=1

w
(i)
B′,k

=

Lk−1∑
i=1

w
(i)
S,k +

Lk−1∑
i=1

LB,k∑
i=1

(
w

(i)
B,k − w

(i)
B′,k

)/ Lk−1∑
i=1

w
(i)
S,k

w
(i)
S,k +

LB,k∑
i=1

w
(i)
B′,k

=

Lk−1∑
i=1

w
(i)
S,k +

LB,k∑
i=1

w
(i)
B,k =

Lk−1+LB,k∑
i=1

w
(i)
k (22)

In (22), we note that the sum of weights keeps unchanged after weight optimization.

Lemma 3.2. If i′ survival particles have optimized weights w
(i′)
S′,k ≥ 1 and i′′ survival

particles have optimized weights w
(i′′)
S′,k < 1, the re-optimized weights of survival particles

are

w
(i)
S′′,k =

 1, w
(i′)
S′,k ≥ 1(

1 +
∑
i′

(
w

(i′)
S′,k − 1

)/∑
i′′

w
(i′′)
S′,k

)
w

(i′′)
S′,k, w

(i′′)
S′,k < 1

(23)

Proof: We re-assign excess weights to other survival particles when w
(i′)
S′,k ≥ 1. Then

the sum of w
(i)
S′′,k is

Lk−1∑
i=1

w
(i)
S′′,k =

∑
i′

1 +
∑
i′′

(
1 +

∑
i′

(
w

(i′)
S′,k − 1

)/∑
i′′

w
(i′′)
S′,k

)
w

(i′′)
S′,k
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=
∑

i′

1 +
∑
i′′

w
(i′′)
S′,k +

∑
i′

(
w

(i′)−1
S′,k

)
(24)

=
∑

i′

w
(i′)
S′,k +

∑
i′′

w
(i′′)
S′,k =

Lk−1∑
i=1

w
(i)
S′,k

In (24), we also note that the sum of weights keeps unchanged after weight re-optimization.
Let round(·) denote integer approximation, and we rewrite (18) as

Ñk = round

(
Lk−1∑
i=1

w
(i)
S′′,k

)
+ round

LB,k∑
i=1

w
(i)
B′,k

 (25)

Subsequently the process of the proposed CPHD filter is summarized as follows:
Initialization: At scan 0, the initialization operation is
For i = 1, · · · , N0

-Generate particle set
{

w
(i)
0 , x

(i)
0

}L0

i=1
, compute D0(x) and ρ0(n) using (1) and (2);

Iteration: At scan k, there are time-update, measurement-update and state estimation.
For k = 1, 2, · · ·

For i = 1, · · · , Ñk

-Generate particle set
{

w
(i)
k−1, x

(i)
k−1

}Lk−1

i=1
, compute x

(i)
S,k|k−1 and x

(i)
B,k using (8) and (9);

-Compute w
(i)
k|k−1, Dk|k−1(x) and ρk|k−1(n) using (10), (4) and (5);

-Compute w
(i)
k and w

(i)
m,k using (13) and (21), compute w

(i)
S′′,k using (23) if necessary;

-Compute Dk(x), ρk(n) and Ñk using (11), (12) and (25);

-Resample Lk particles from set
{

w
(i)
k , x

(i)
k

}Lk−1+LB,k

i=1
to get a new set

{
w

(i)
k , x

(i)
k

}Lk

i=1
;

-Estimate N̂k and X̂k using (19) and (20).

4. Experimental Results and Discussions. The numerical study is presented to eval-
uate the proposed CPHD filter. During the surveillance period of 60 scans, the targets
move with the constant velocity (CV) motion and the constant turn (CT) motion. In the
scenario, 100 Monte Carlo runs are done to obtain simulation results, where the sampling
period is 1s.

Figure 1 shows the target tracks and measurements. We note that four targets move in
cluttered environment: Target 1 moves with velocity of (−20,−5)m/s and turn of 0.25◦/s

Figure 1. Target tracks and measurements
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Figure 2. Target tracks in x coordinate

Figure 3. Target tracks in y coordinate

Figure 4. Target number estimates

from position (1000, 1500)m during 1∼60s. Target 2 travels from position (250, 750)m with
velocity of (20, 5)m/s and turn of −0.5◦/s during 11∼50s. Target 3 moves with velocity
of (15, 15)m/s and turn of −1◦/s from position (−1500, 250)m during 21∼50s. Target
4 keeps CV motion with velocity of (−15,−10)m/s from position (−250, 1000)m during
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Figure 5. OSPA distance

31∼60s. Figures 2 and 3 demonstrate the tracks in x and y coordinates. As seen, the
estimated positions of the proposed CPHD filter are near the true tracks. By comparison,
the standard filter has position deviation. Figure 4 shows the estimated number of targets.
We note that the standard filter has unstable number estimates. It over-estimates one
target at scan 49 because of the effect from close clutters. Additionally it misses one
target at scans 4 and 31 respectively due to the imperfection of sensors. On the contrary,
the estimated number of targets using the proposed filter during the surveillance period
coincides with the ground truth. The reason is that the excessive particle weights of
newborn targets are automatically assigned to survival targets with certain percentage
when the newborn targets appear. Then the survival-target particles mainly concentrate
on the true target. Figure 5 plots the optimal sub pattern assignment (OSPA) distance
against time. It can be observed that the tracking performance of the standard filter
is worse because it exaggerates the biased position. It has three intensity peaks as a
result of the miscalculated number estimates. And what is more, the maximum value of
the OSPA distance 69.43m is obtained at scan 49. In contrast, it can be verified that
the proposed filter has the promising performance of track continuity whether the target
motion is maneuvering or not.

5. Conclusions. This paper introduces an improved CPHD filter for the MTT. The work
proposes two lemmas on weight optimization for correcting estimated number of targets.
The numerical study suggests that the proposed filter has a significant improvement in
tracking performance over the standard filter. As future developments of this work, we
plan to adaptively compute the weight threshold for various applications.
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