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Abstract. Regression analysis is a common prediction method. Determining the re-
gression equation with high precision is a core of regression analysis, which has been the
hot research content in the application and academia. However, the existing regression
methods did not systematically consider the reliability of sample. In the paper, we firstly
analyze the characteristics of reliability, put forward the sample description system by
regarding reliability as the auxiliary index, and give the concept of basic effect function
which reflects the reliability. Then we establish a regression model based on synthesiz-
ing effect (denoted by BSE-RM), and further analyze the characteristics of BSE-RM
from theory and application. The results show that BSE-RM not only has good structure
characteristics and interpretability, but also extends and perfects the existing regression
analysis methods.
Keywords: Regression analysis, Basic effect function, Regression function, Reliability,
Prediction

1. Introduction. Regression analysis is a statistical tool used for finding the relation-
ship between one variable and another variables. It quantizes the relationship which
exists between these variables. It has been successfully used to solve many management
and prediction problems. For example, [1] started from the factors which may influ-
ence the airport passenger throughput, and made an analysis on the correlation between
each influence factor and the throughput, and then applied this method to the airport in
southwest; [2] builded a sensor-based forecasting model using support vector regression
and applied it to an empirical data set from a multi-family residential building in New
York City. For the problem that support vector regression has deficiency to solve the
problem that highly nonlinear characteristics appear in the electric load forecasting, [3]
proposed a chaotic particle swarm optimization algorithm and provided a theoretical ex-
ploration of the electric load forecasting support system; [4] firstly applied support vector
machines to regression prediction of stock index futures; [5] presented a robust hourly
cooling-load forecasting method based on time-indexed autoregressive with exogenous in-
puts models, in which the coefficients are estimated through a two-stage weighted least
squares regression; [6] applied Gaussian process regression (GPR) to probabilistic stream
flow forecasting; [7] gave an analysis for the influence to pedestrian crossing delay made
by right-turn cars and models. The relationship between independent variables and de-
pendent variables was fitting to linear regression model and a multiple linear regression
model based on the observed data. People in the study found new forecasting methods
and models constantly to perfect the existing ones; [8] presented the least squares re-
gression based on some basic assumptions, and any deviation hypothetical situation will
affect the regression results. The article discussed the main problems in the regression
analysis deviating from the basic assumption which may affect the results of regression
analysis and gives the corresponding ways to find and remedy problems; [9] proposed a
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new criterion based on weighted error to evaluate the prediction methods and verified its
superiority; [10] established the dynamic exponential smoothing method to predict the
processor running time in grid environment; [11] builded a regression model based on the
quasi linear function (QRM), and discussed the parameter estimation of QRM strategies,
and this paper gives the parameters estimation method based on the genetic algorithm
and the least squares estimation method, and the error test method based on the residual.

From the above reviews, we know that the current regression analysis theory has tended
to be mature. Its research focuses on the selection of regression function, but it is worth
noting that these results hold under the precondition that the sample data are completely
reliable. In real life, completely reliable data is difficult to obtain, which makes the sample
data cannot satisfy the assumption of classical regression. Therefore, the mechanism of
the classical regression model has many defects. In addition, the innovation of the existing
prediction methods mostly concentrates on improving the prediction accuracy, and gives
less consideration on data itself; while the basis of reliable prediction is the reliability of the
data. Therefore, it is necessary to make up for the shortcomings of the classical regression
method. In this paper, for the shortcomings of the current regression, we mainly do the
work as follows. In Section 2, we analyze three defects of the classical regression model
through describing the characteristic. In Section 3, for the first shortcoming, we add the
reliability dimension to the general description of the samples; for the second shortcoming,
we propose the concept of basic effect function; then we establish a regression model based
on the sample effect. In Section 4, we analyze the characteristics of this model. In Section
5, using a concrete case, we verified the two methods, and make a difference between them.
Finally, conclusions are derived in Section 6.

2. Characteristic Analysis of Regression Problems. Regression analysis is a kind of
observation data-based statistical method, which is used to find the relationship between
explanatory variable and explained variable on the basis of a certain hypothesis, and the
basic form is:

y = µ(x) + ε(x). (1)

Here, x denotes explanatory variable, y denotes explained variable, µ(x) (called regres-
sion function , and it denotes the mathematical expectation of y(x) intuitively) is the
deterministic relationship of x, and ε(x) is the error term.

Current regression analysis theories are mostly established on the basis of ε(x) obeying
normal distribution N(0, σ2), and the basic process is as follows.

Step 1 Determine the fundamental regression function µ(x) according to the scatter
diagram distribution characteristics of sample Z = {(xi, yi)| i = 1, 2, · · · , n} (for example,
linear function, quadratic function).

Step 2 Determine the parameters value of regression function µ(x) combining with the
given sample points and least square method (that is, min

∑n
i=1[yi − µ(xi)]

2), and then

get the estimates µ̂(x) , ŷ(x, Z).
Step 3 Test the rationality of regression function ŷ(x, Z) = µ̂(x) under a certain

reliability.
It is easy to see that the above processes are established based on the assumption that

the sample data are all reliable (that is, sample inconsistencies are caused by randomness).
However, collecting samples in the actual problem is often influenced by many subjective
and objective factors, and different sample’s reliability is often different. Due to the fact
that the reliability of regression equation depends on the reliability of the samples (the
higher (lower) the reliability of the sample data is, the higher (lower) the reliability of
corresponding regression results is), the current methods often cannot be directly used for
practical problems. Its shortcomings can be summarized as the following three aspects.

1) The description way of the sample data is not perfect. The current data
description only contains the observed values of explanatory variables xi and explained
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variables yi, and lacks the reliability description of (xi, yi). However, the reliability of the
sample is closely related to the reliability of the regression equation. Thus, if ri denotes
the reliability of the observed value (xi, yi), we can reasonably describe the sample as
(xi, yi, ri).

2) The mechanism of sample effect is not perfect. Different samples with differ-
ent reliability have a different effect (or utility) in the regression process, therefore, the
established regression equation should be a synthesis of a series of regression equations
under different reliability sample data sets.

3) The description system of regression results is not perfect. The current
description way of the regression results is hypothesis-test based on the random theory.
It does not consider the reliability description of regression results caused by the sample
reliability.

The above analyses show that the existing regression methods need be improved further.
In the following, we will focus on the shortcomings of current regression methods and
discuss the synthesizing effect-based regression model.

3. Synthesizing Effect-Based Regression Model. In this section, surrounding the
effect characteristics of the sample reliability, we will discuss the construction strategy of
the regression model based on the sample effect. For convenience, 1) Ω = {(xi, yi, ri)|i =
1, 2, · · · , n} denotes the sample data set (here, (xi, yi) denotes the observed values of
explanatory variables and explained variables and ri denotes the reliability of (xi, yi)); 2)
Ωλ = {(xi, yi)|(xi, yi, ri) ∈ Ω and ri = λ} denotes the sample data set whose reliability
is λ; 3) ŷ(x, Ω) and ŷ(x, Ωλ) are corresponding shortcomings for the regression equation
based on the data set Ω and Ωλ.

It is easy to see, ŷ(x, Ωλ) (the regression equation of the classical sense) has the ex-
act meaning. However, ŷ(x, Ω) varies with the reliability of the sample. For the sample
data set Ω = {(xi, yi, ri)| i = 1, 2, · · · , n}, if all the subsets with the various reliabil-
ity: Ωλ1 , Ωλ2 , · · · , Ωλm contain enough elements (here, λ1, λ2, · · · , λm denote all of the
different values of r1, r2, · · · , rn and meet λ1 < λ2 < · · · < λm), we can understand
Ωλ1 , Ωλ2 , · · · , Ωλm as a kind of decomposition of Ω and {ŷ(x, Ωλk

)|k = 1, 2, · · · ,m} as the
basic factors reflecting the local feature of ŷ(x, Ω). So, regression problem ŷ(x, Ω) can be
interpreted as a synthesis problem of {ŷ(x, Ωλk

)| k = 1, 2, · · · , m}.
In the prediction problem, the higher (lower) the reliability of the sample is, the larger

(smaller) the credibility of the corresponding regression equation is. So in the process
of synthesizing of {ŷ(x, Ωλk

)|k = 1, 2, · · · ,m}, the effect of ŷ(x, Ωλk
) increases with λk.

If W (λ) denotes the effect of ŷ(x, Ωλk
), we can understand W (λ) as a mapping (called

basic effect function) from [0, 1] to [0, +∞) and W (λ) should satisfy the following
principles.

Principle 1: The effect of λ is monotonic, that is, W (λ) is monotonic non-decreasing
on [0, 1].

Principle 2: The effect of λ is continuous, that is, W (λ) is continuous on [0, 1].
Principle 3: The effect of λ is existence, that is, W (λ) > 0 always holds for any

λ ∈ (0, 1].
Principle 4: The effect of λ is normalization, that is, W (0) = 0, W (1) = 1 always

hold.
Here, Principle 1 ∼ 3 must be satisfied, and they respectively correspond to the following

facts in real problems: 1) the higher the sample reliability is, the larger the credibility of
the corresponding regression equation is; 2) when the sample data reliability changed little,
so does the credibility of its corresponding predicted results; 3) when sample data has
certain reliability, its corresponding predicted results have a certain credibility. Principle
4 is set to maintain a consistence with conventional processing models. W (0) = 0 can
be better reflecting the intuitive fact that when sample data is completely unreliable, its
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corresponding predicted results cannot be trusted. It is easy to verify:

W1(λ) = λα, 0 < α < ∞, (2)

W2(λ) = QL((a0, c0), (a1, c1), · · · , (an, cn))(λ) (3)

are basic effect functions. Here, 0 = a0 < a1 < · · · < an = 1, 0 = c0 < c1 ≤ c2 ≤
· · · ≤ cn = 1, QL((a0, c0), (a1, c1), · · · , (an, cn)) denotes the following rules (called quasi-
linear corresponding rules based on (a0, c0), (a1, c1), · · · , (an, cn)): when ak−1 ≤ x ≤
ak, QL((a0, c0), (a1, c1), · · · , (an, cn))(x) = ck−1 + (ck − ck−1)(x − ak−1)/(ak − ak−1), k =
1, 2, · · · , n.

For a given basic effect function W (λ), if we regard W (λ1),W (λ2), · · · ,W (λm) as the
basic factor of the effectiveness value of ŷ(x, Ωλ1), ŷ(x, Ωλ2), · · · , ŷ(x, Ωλm), then

m∑
k=1

wk · ŷ(x, Ωλk
) , ŷ(x, Ω ⊕ W (λ)) (4)

is a systematic comprehensive model of {ŷ(x, Ωλk
)| k = 1, 2, · · · ,m} by considering the

effect of sample (called the regression model based on synthesizing effect , shorted
for BSE-RM). Here, wk = W (λk)/

∑m
i=1 W (λi), k = 1, 2, · · · ,m.

Obviously, 1) W (λ) is a kind of parameter reflecting decision-making notion. In fact,
it is a kind of processing mechanism on uncertain information. Its purpose is to quantify
the importance of the reliability. 2) ŷ(x, Ω⊕W (λ)) varies with W (λ). The inconsistency
is caused by the fact that there do not exist generally accepted uncertainty processing
methods. 3) The selection of W (λ) is the core problem of (4). In practice, the concrete
form of the W (λ) should be determined by the characteristics of the prediction problem,
the use of the regression results and so on. 4) Different W (λ) reflects different decision-
making consciousness, and even the difference is remarkable. For W (λ) = λα, α is the
parameter which concentratively describes processing consciousness on reliability. Its role
characteristics are stated as follows: a) when α = 1, the effect of the reliability increases
linearly along with the increase of reliability; b) when α ̸= 1, although the effect of
the reliability still increases with the increase of reliability, the change way will occur
fundamentally, and the smaller α is, the smaller the difference effect of the reliability is
(especially, when α → 0, λ ∈ (0, 1], λα −→ 1 will always hold, and this implies that the
effect of various reliability will tend to be 1). The larger α is, the more remarkable the
core status of the effect reliability will be.

4. The Characteristic Analysis of BSE-RM. In Section 3, we analyzed the charac-
teristics of reliability and proposed the regression model of BSE-RM based on samples
effect. In this section we will further discuss the value rule of ŷ(x, Ω ⊕ W (λ)) from the
angle of quantification.

Theorem 4.1. Let Ω = {(xi, yi, ri)|i = 1, 2, · · · , n} denote the sample data set, and
Ωλ1 , Ωλ2 , · · · , Ωλm denote subsets with all the various reliability in Ω. Then ŷ(x, Ω ⊕
W1(λ)) = ŷ(x, Ω ⊕ W2(λ)) always holds if and only if W1(λ) and W2(λ) are r1 = r2 =
· · · = rn = r or ŷ(x, Ωλ1) = ŷ(x, Ωλ2) = · · · = ŷ(x, Ωλm).

Proof: Sufficiency. By (4) and the definition of the basic effect function, we can
know: 1) When r1 = r2 = · · · = rn = r, ŷ(x, Ωλ1) = ŷ(x, Ωλ2) = · · · = ŷ(x, Ωλm), always
holds for any W (λ); 2) When ŷ(x, Ωλ1) = ŷ(x, Ωλ2) = · · · = ŷ(x, Ωλm), ŷ(x, Ω ⊕ W (λ)) =∑m

k=1 wkŷ(x, Ωλk
) = ŷ(x, Ωλ1)

∑m
k=1 wk = ŷ(x, Ωλ1) always holds for any W (λ). That

is to say, when r1 = r2 = · · · = rn = r or ŷ(x, Ωλ1) = ŷ(x, Ωλ2) = · · · = ŷ(x, Ωλm),
ŷ(x, Ω ⊕ W1(λ)) = ŷ(x, Ω ⊕ W2(λ)) always holds for any W1(λ) and W2(λ).

Necessity. In the following, we prove the necessity. Suppose r1 = r2 = · · · = rn = r
and ŷ(x, Ωλ1) = ŷ(x, Ωλ2) = · · · = ŷ(x, Ωλm) do not hold, then there will be t1, t2 ∈
{λ1, λ2, · · · , λm} making t1 ̸= t2 and ŷ(x, Ωt1) ̸= ŷ(x, Ωt2) hold at the same time, and we
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can assume 0 < λ1 < λ2 < · · · < λm and ŷ(x, Ωλ1) ̸= ŷ(x, Ωλ2). In the following, we verify
that ŷ(x, Ω ⊕ W1(λ)) = ŷ(x, Ω ⊕ W2(λ)) does not always hold for any W1(λ) and W2(λ)
in two cases.

Case 1. If m = 2, then for W1(λ) = λ and W2(λ) = QL((0, 0), (λ1, 1), (1, 1))(X), we
have W1(λ1) = λ1, W1(λ2) = λ2, W2(λ1) = W2(λ2) = 1, ŷ(x, Ω⊕W1(λ)) = λ1ŷ(x, Ωλ1)/(λ1

+λ2)+λ2ŷ(x, Ωλ2)/(λ1+λ2), ŷ(x, Ω⊕W2(λ)) = (ŷ(x, Ωλ1)+ŷ(x, Ωλ2))/2, ŷ(x, Ω⊕W1(λ))−
ŷ(x, Ω ⊕ W2(λ)) = (λ1 − λ2)[ŷ(x, Ωλ1) − ŷ(x, Ωλ2)]/[2(λ1 + λ2)] ̸= 0.

Case 2. If m > 2, we can assume m = 4 (the rest should be considered in the same
way), and then for W1(λ) = QL((0, 0), (λ1, 0.2), (λ2, 0.8), (λ3, 1), (1, 1))(λ) and W2(λ) =
QL((0, 0), (λ1, 0.4), (λ2, 0.6), (λ3, 1), (1, 1))(λ), we have W1(λ1) = 0.2, W1(λ2) = 0.8,
W1(λ3) = W1(λ4) = 1, W2(λ1) = 0.4, W2(λ2) = 0.6, W2(λ3) = W2(λ4) = 1, ŷ(x, Ω ⊕
W1(λ)) = 0.2ŷ(x, Ωλ1)/3 + 0.8ŷ(x, Ωλ2)/3 + ŷ(x, Ωλ3)/3 + ŷ(x, Ωλ4)/3, ŷ(x, Ω ⊕ W2(λ)) =
0.4ŷ(x, Ωλ1)/3 + 0.6ŷ(x, Ωλ2)/3 + ŷ(x, Ωλ3)/3 + ŷ(x, Ωλ4)/3, ŷ(x, Ω ⊕ W1(λ)) − ŷ(x, Ω ⊕
W2(λ)) = −0.2(ŷ(x, Ωλ1) − ŷ(x, Ωλ2))/3 ̸= 0.

According to Theorem 4.1, we know that: 1) if we set the reliability of the samples to
be 1 in BSE-RM, (4) will be the regression function of current methods, and this implies
that (4) is a generalization of the existing regression method; 2) only when the reliability
of the sample is not completely the same, can the effect of the samples be reflected; 3)
the different reliability of sample data sets can get the same regression function.

In regression problems, the number of samples should be enough. Therefore, the above
discussion is only a thought method, and it cannot be simply used in practice. We can
construct BSE-RM by the following steps (here, Ωλ1 , Ωλ2 , · · · , Ωλm denotes the various
reliability of the data set and λ1 < λ2 < · · · < λm; |Ωλk

| denotes the number of samples
in Ωλk

):
Step 1 Based on the requirement on the least sample size, we should integrate Ωλ1 , Ωλ2 ,

· · · , Ωλm into ∪m1
k=1Ωλk

,∪m2
k=m1+1Ωλk

, · · · ,∪m
k=mk−1+1Ωλk

.
Step 2 Based on the sample size, determine the comprehensive reliability α1, α2, · · · , αs

of the ∪m1
k=1Ωλk

,∪m2
k=m1+1Ωλk

, · · · ,∪m
k=mk−1+1Ωλk

, that is

αi =

mi∑
k=mi−1

|Ωλk
|

| ∪mi
k=mi−1+1 Ωλk

|
· λk, (here, i = 1, 2, · · · , s; m0 = 1, ms = m). (5)

Step 3 Based on Ωα1 = ∪m1
1 Ωλk

, Ωα2 = ∪m2
k=m1+1Ωλk

, · · · , Ωαs = ∪m
ms−1+1Ωλk

, determine
ŷ(x, Ω ⊕ W (λ)) by using (4) and (5).

5. Application Example. In this section, we will combine a concrete case to further
illustrate the effectiveness and the specific implementation process of BSE-RM.

Case description: In investment market, the benefits and risks coexist, and market
environment directly affects the correlation relationship between them. How to develop
an investment scheme is important in academics and applications. In order to develop
a better investment plan, a financial investment company decided to summarize the cor-
relation between investment rate and investment risk based on the previous investment
records. The data of 192 investment results are shown in Table 1. Here, xi denotes the
risk value of one investment; yi denotes real income rate of one investment; zi denotes
expected income of one investment; ri = |yi− zi| denotes the deviation of real income and
expected income; r∗i = 1 − ri/ max{r1, r2, · · · , rn} denotes the satisfaction degree.

Since the deviation of real income and expected income is caused by investment risk,
ri = |yi−zi| can be regarded as a quantitative index describing the investment risk, which
reflects the satisfaction degree on the investment plan. This shows that the correlation
of investment rate and investment risk can be summarized as a regression problem based
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on data sample {(xi, yi, r
∗
i )|i = 1, 2, · · · , n}. Combining with several different satisfac-

tion processing methods, we will use BSE-RM to determine the regression function of
investment rate on investment risk. The specific process is stated as follows.

Step 1 Take the first 180 data in Table 1 as the regression sample set Ω, and the last
12 as the test sample data.

Step 2 Divide Ω into several sub-sample data set {Ω0, Ω0.1, Ω0.2, Ω0.3, Ω0.4, Ω0.5, Ω0.6,
Ω0.7, Ω0.9, Ω1}, according to the sample satisfaction.

Step 3 We integrate {Ω0, Ω0.1, Ω0.2, Ω0.3, Ω0.4, Ω0.5, Ω0.6, Ω0.7, Ω0.9, Ω1} into {Ω0 ∪Ω0.1 ∪
Ω0.2, Ω0.3 ∪ Ω0.4 ∪ Ω0.5, Ω0.6 ∪ Ω0.7, Ω0.9 ∪ Ω1}, according to the regression sample not less
than 30.

Step 4 Compute the comprehensive satisfaction of the integrated four sample data
sets: {λ1, λ2, λ3, λ4} , {0.160, 0.411, 0.676, 0.951}.

Step 5 Determine the form of the regression function of each group by combining
with scatter plots of Ω0 ∪ Ω0.1 ∪ Ω0.2, Ω0.3 ∪ Ω0.4 ∪ Ω0.5, Ω0.6 ∪ Ω0.7, Ω0.9 ∪ Ω1; then use
the least square method to obtain the regression function of each group: ŷ(x, Ωλk

),
k = 1, 2, 3, 4. The specific regression functions and their test values are shown in Ta-
ble 2 (here, we assume that the total residual sum of squares is ST =

∑
(yi − y)2,

the residual sum of squares is SR(µ̂(x)) =
∑

(yi − µ̂(xi))
2 and the regression sum of

squares is Se(µ̂(x)) =
∑

(µ̂(xi) − y)2; R2(µ̂(x)) = 1 − SR(µ̂(x))/ST is goodness of fit;
F (µ̂(x)) = Se(µ̂(x))/[SR(µ̂(x))/(n − 2)] is F test value).

Step 6 Determine the regression model based on synthesizing effect: ŷ(x, Ω ⊕ W (λ)),
combined with the given W (λ) and ŷ(x, Ωλk

), k = 1, 2, 3, 4 and Formula (4). In Table 3,
we give the regression functions under several concrete W (λ).

From Table 2, we can know that the R2 and the F of ŷ(x, Ωλk
), k = 1, 2, 3, 4 are better

than that of classic regression function ŷ(x, Ωλ∞). This shows that reasonable layer can
improve the quality of regression function and eliminate the shortage that regression
model is difficult to determine in the classical regression methods in a sense (for example,
in this case, although all samples scatter plot is roughly as parabola, there is part of the
sample clearly presenting linearity. So it is not reasonable to fit it only with parabolic or
linear).

In order to demonstrate performance of BSE-RM, we will analyze the regression func-
tions in Table 3 with the selected 12 samples and the test indexes: prediction precision
and predicted residual sum of squares. The selected sample values, the predicted values of
the functions and the precision and the predicted residual sum of square of the regression
functions are shown in Table 4 (here, Q(µ̂(x)) = 1 −

∑12
i=1(yi − µ̂(xi))

2/
∑n

i=1 y2
i denotes

the precision of µ̂(x) and SR(µ̂(x)) =
∑12

i=1(yi − µ̂(xi))
2 denotes the predicted residual

sum of square of µ̂(x)).
From Table 4 we can know: 1) The prediction precision values of µ̂i (i = 0, 1, 2, 3, 4) are

all greater than the universal threshold 0.85. This shows that µ̂i (i = 0, 1, 2, 3, 4) are all
feasible as the basis of prediction; 2) The SR of µ̂i (i = 1, 2, 3, 4) is much better than that
of the µ̂0. Namely, the information of the BSE-RM is more comprehensive and closer to
the real value.

All of above analysis and discussion show that: 1) On the basis of sample reliability
research, prediction method based on the data has extensive practical background; 2)
BSE-RM has good structure characteristics and interpretability. The basic idea of BSE-
RM has reference significance to many complex decision problems (namely, we can group
the sample data according to certain strategy, which can reduce the computational com-
plexity and avoid the problem that regression model is difficult to determine to a certain
extent); 3) Regression function is different under different decision-making consciousness
(that is the basic effect function), which dovetails beautifully with the realistic decision
problem.
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Table 1. The sample data information: xi(%), yi(%), zi(%), ri, and r∗i

xi 11.1 11.3 12.5 12.7 13.4 13.6 15.6 17.1 18.4 19.9 15.3 15.5 16.1 16.3 16.7 29.5

yi 16.3 16.1 16.7 17.1 17.7 18.1 18.3 19.5 20.3 22.1 18.8 19.2 20.1 20.3 20.4 23.6

zi 17.2 17.1 17.6 18 18.5 18.9 19.2 20.3 21.2 22.8 19.4 19.7 20.9 20.9 21.2 16.7

ri 0.9 1 0.9 0.9 0.8 0.8 0.9 0.8 0.9 0.7 0.6 0.5 0.8 0.6 0.8 6.9

r∗i 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 0.9 0.9 0.9 0.3

xi 16.8 17.2 17.5 17.7 18.4 18.6 19.5 19.6 21.3 19.9 20.6 21 21.4 21.6 21.5 29.3

yi 20.1 20.3 22.1 22.2 20.5 20.6 21.2 21.1 21.4 21.1 21.7 21.4 21.6 21.7 21.8 23.8

zi 20.8 20.6 23.2 23.6 21.8 21.7 22.5 20.8 20.8 20.5 20.6 20.5 20.3 20.3 20.5 17

ri 0.7 0.3 1.1 1.4 1.3 1.1 1.3 0.3 0.6 0.6 1.1 0.9 1.3 1.4 1.3 6.8

r∗i 0.9 0.9 1 0.9 0.9 0.9 0.9 0.9 1 0.9 0.9 1 0.9 0.9 0.9 0.3

xi 21.7 21.9 21.9 22.4 22.7 23.2 23.6 24 24.6 25.7 26.3 26.7 27.2 27.8 28.6 28.9

yi 22 21.9 21.9 22.2 22.5 22.7 22.8 22.6 22.8 23.1 22.7 22.8 22.5 22.2 22 24.3

zi 20.8 20.5 21.2 21.3 21.1 21.4 21.6 21.5 22.2 22.7 22.4 21.9 22 21.8 21.3 17.6

ri 1.2 1.4 0.7 0.9 1.4 1.3 1.2 1.1 0.6 0.4 0.3 0.9 0.5 0.4 0.7 6.7

r∗i 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.9 1 1 0.3

xi 22.5 23.5 23.8 24.2 35.9 35.1 35.3 35.6 35.7 35.8 36.5 36.6 37.5 37.6 37.7 33.7

yi 24.4 25 25.1 25.3 29.1 13.1 12.6 13.3 13.2 13 12.2 12.1 11 10.9 10.8 17.2

zi 21.6 27.9 28 28.4 18 20 19.4 20 20.7 20.3 19.6 18.3 17.1 18.1 17.9 8.8

ri 2.8 2.9 2.9 3.1 2.9 6.9 6.8 6.7 7.5 7.3 7.4 6.2 6.1 7.2 7.1 8.4

r∗i 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.2

xi 37.9 38.1 38.3 38.7 39.2 38.1 38.3 38.4 38.6 38.7 38.9 40 40.2 40.3 40.7 33.5

yi 10.5 10.3 10 9.6 9 13.4 15.3 14.2 14.5 14.5 13.9 12.1 12.9 12.9 12.5 17.3

zi 17.4 17.1 16.3 16.2 15.2 20.1 21.7 20.8 19.6 20.5 19 17.9 18.2 18.4 18 8.1

ri 6.9 6.8 6.3 6.6 6.2 6.7 6.4 6.6 5.1 6 5.1 5.8 5.3 5.5 5.5 9.2

r∗i 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.1

xi 25.1 25.2 25.4 25.7 26.3 26.4 26.6 26.9 27.4 27.5 27.7 28.2 28.3 28.4 28.6 33.3

yi 28.9 28.8 28.5 28.2 27.4 27.3 27.1 26.7 26.1 26 25.8 25.2 25 24.9 24.7 17.6

zi 34.2 34.1 34 33.6 32.8 32.5 32.3 31.8 21 21 20.9 20.4 19.9 19.7 19.8 9.7

ri 5.3 5.3 5.5 5.4 5.4 5.2 5.2 5.1 5.1 5 4.9 4.8 5.1 5.2 4.9 7.9

r∗i 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2

xi 31 31.2 31.7 31.8 32.6 32.9 33.4 38.8 39.2 39.5 39.8 40.1 40.6 40.9 11.5 32.8

yi 21.5 21 20.8 20.5 20.2 19.8 19.3 13 12.2 12.9 11.8 11.5 11.1 10.9 18.1 17.8

zi 20.8 20.4 20.1 19.4 18.9 18.4 17.9 12.5 11.5 11.6 10.7 12.6 12.2 12.1 21.7 8.7

ri 0.7 0.6 0.7 1.1 1.3 1.4 1.4 0.5 0.7 1.3 1.1 1.1 1.1 1.2 3.6 9.1

r∗i 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 0.9 0.9 0.9 0.9 0.9 0.9 0.6 0.1

xi 11.8 12 11.6 11.7 12.1 12.3 13.4 14.5 15.3 16.9 17.4 18.3 19.1 19.6 20 32.5

yi 18.5 19 18.4 18.5 18.7 18.8 19.5 20.1 20.6 21.5 21.8 22.4 22.9 23.1 23.9 17.6

zi 22.8 23.3 21.3 21.7 22.2 22.1 22.6 22.9 23.5 24.6 25.3 25.3 26.5 26.6 27.3 9.2

ri 4.3 4.3 2.9 3.2 3.5 3.3 3.1 2.8 2.9 3.1 3.5 2.9 3.6 3.5 3.4 8.4

r∗i 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1 0.7 0.7 0.7 0.2

xi 21.7 22.3 22.7 23.1 20.1 20.3 20.5 20.7 21.4 21.5 21.6 22.3 29.3 29.9 30.5 31.7

yi 23.6 23.3 23.5 25 23.2 23.3 23.4 23.5 23.8 23.9 23.9 24.3 21.9 21.6 21.8 16.8

zi 26.9 26.4 26.4 28.8 26.9 26.4 26.6 26.8 27.3 27.3 17.5 28 22.8 22 22.7 7.9

ri 3.3 3.1 2.9 3.8 3.7 3.1 3.2 3.3 3.5 3.4 3.6 3.7 0.9 0.4 0.9 8.9

r∗i 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.9 1 0.9 0.1

xi 29.6 29.9 30.2 30.3 31.4 31.8 32.7 32.9 33.6 33.9 34.1 34.7 21.3 21.5 21.4 31.6

yi 23.5 23.1 25.1 24.5 24.1 23.9 22.1 20.9 20.1 21.2 21.1 20.2 20.9 20.9 20.9 17.8

zi 29.9 29.6 32.1 31.4 29.5 29.4 27.2 26.2 25 26.7 27.8 27.3 30.9 30.8 29.7 9.0

ri 6.4 6.5 7 6.9 5.4 5.5 5.1 5.3 4.9 5.5 6.7 7.1 10 9.9 8.8 8.8

r∗i 0.4 0.4 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0 0 0.1 0.1

xi 21.6 21.8 21.8 22.3 22.6 23.1 23.5 23.9 24.5 25.6 26.2 26.6 27.1 27.7 28.5 31.1

yi 20.8 20.8 20.7 20.6 21.5 19.7 20.2 20.1 20 19.6 19.4 19.3 19.9 20 18.9 18.0

zi 29.5 29.4 28.8 28.9 29.7 28.2 28.1 28 27.7 27.4 11.3 11.2 11.7 11.7 10.7 9.4

ri 8.7 8.6 8.1 8.3 8.2 8.5 7.9 7.9 7.7 7.8 8.1 8.1 8.2 8.3 8.2 8.6

r∗i 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1

xi 29.2 29.8 30.4 30.9 11.3 12.7 13.1 17.8 18.6 20.1 24.3 25.4 26.8 29.2 32.5 37.2

yi 18.5 18.4 18.2 18 21.7 22.9 24.1 24.5 24.1 23.9 24.5 24.8 23.5 23.8 21.8 19.0

zi 10.4 10.3 10 9.5 20.3 21.4 25.7 25.1 26.2 24.3 29.6 28.1 22.2 21.3 19.8 17.5

ri 8.1 8.1 8.2 8.5 1.4 1.5 1.6 0.6 2.1 0.4 5.1 3.3 1.3 2.5 2.0 1.5

r∗i 0.2 0.2 0.2 0.2 0.9 0.9 0.8 0.9 0.8 1.0 0.5 0.7 0.9 0.8 0.8 0.9
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Table 2. ŷ(x, Ωλk
) and their test numbers

ŷ(x, Ωλk ) R2(ŷ(x, Ωλk )) F (ŷ(x, Ωλk))

ŷ(x, Ωλ1) = −0.301x + 27.402 0.926 348.164

ŷ(x, Ωλ2) = −1.264x + 61.028 0.901 480.250

ŷ(x, Ωλ3) = −0.008x2 + 0.809x + 10.086 0.986 1075.848

ŷ(x, Ωλ4) = −0.043x2 + 2.073x − 2.563 0.971 975.985

ŷ(x, Ωλ∞) = −0.046x2 + 2.173x − 2.447 0.701 207.624

Here, ŷ(x, Ωλ∞) denotes regression function based on the 180 samples without considering the reliability.

Table 3. Regression functions under some different decision-making consciousness

Regression model Regression function

The classical model µ̂0(x) = −0.046x2 + 2.173x − 2.447

BSE-RM

W1(λ) = λ µ̂1 , ŷ(x, Ω ⊕ W1(λ)) = −0.021x2 + 0.868x + 15.698

W2(λ) = λ2 µ̂2 , ŷ(x, Ω ⊕ W2(λ)) = −0.027x2 + 1.267x + 9.054

W3(λ) = sin(0.5πλ) µ̂3 , ŷ(x, Ω ⊕ W3(λ)) = −0.021x2 + 0.883x + 15.398

W4(λ) = QL((0, 0), (0.5, 0.4), (1, 1))(λ) µ̂4 , ŷ(x, Ω ⊕ W4(λ)) = −0.022x2 + 0.967x + 13.955

Table 4. The predictive value of the corresponding functions and the test
number of the functions

xi 11.3 12.7 13.1 17.8 18.6 20.1 24.3 25.4 26.8 29.2 32.5 37.2
Q(µ̂i(x)) PRSS(µ̂i(x))

yi 21.7 22.9 24.1 24.5 24.1 23.9 24.5 24.8 23.5 23.8 21.8 19.0

µ̂0(xi) 16.2 17.7 18.1 21.7 22.1 22.6 23.2 23.1 22.8 21.8 19.6 14.7 0.979 138.558

µ̂1(xi) 22.8 23.3 23.5 24.5 24.6 24.7 24.4 24.2 23.9 23.1 21.7 18.9 0.999 3.631

µ̂2(xi) 19.9 20.8 21.0 23.1 23.3 23.6 23.9 23.8 23.6 23.0 21.7 18.8 0.996 21.934

µ̂3(xi) 22.7 23.2 23.4 24.5 24.6 24.7 24.5 24.3 24.0 23.3 21.9 19.2 0.999 3.257

µ̂4(xi) 18.0 18.5 18.6 19.4 19.4 19.4 18.6 18.3 17.8 16.7 14.7 10.9 0.999 3.032

6. Conclusions. Classical regression model is a statistical tool. It is not only widely
applied in many fields, but also is the basis of the theory and method of econometrics.
However, classical regression model does not consider data reliability, which restricts its
extensive application greatly. With reliability of the sample as carrier, BSE-RM makes up
for its shortcomings to a large extent. Theoretical analysis and example calculation show
that BSE-RM has not only good structure characteristics and interpretability, but also
good regression effect. Therefore, the paper enriches the existing theory of regression anal-
ysis, provides a basic method to make forecast and decision with different characteristics
of the sample data, and has broad application prospects in many fields.

In Section 2, we put forward three shortcomings for the classical regression model, and
BSE-RM solved two of them only. The third one (the description system of regression
results is not perfect) still exists. The sample set with different reliability maybe derive
the same regression function (for example, when ri ≡ r > 0 holds in Ω = {(xi, yi, ri)|i =
1, 2, · · · , n}, the form of ŷ(x, Ω⊕W (λ)) has nothing with W (λ) and r). This shows that
just relying on ŷ(x, Ω ⊕ W (λ)) cannot fully describe the characteristics of the regression
results, which lacks the quantitative index about reliability of the regression results. So we
will discuss the descriptive system of the regression results combining with ŷ(x, Ω⊕W (λ))
in the future work.
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