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Abstract. This paper developed an adaptive neural networks (NNs) command filtered
control approach to speed regulation for induction motors. First, neural networks are
used to approximate unknown nonlinear functions and the adaptive command filtered
backstepping is employed to construct controllers. Next, the proposed control method can
overcome the problems of “nonlinear systems with parameter uncertainties” and “ex-
plosion of complexity” inherent in the traditional backstepping design and the adaptive
neural controllers guarantee the tracking error can converge to a small neighborhood of
the origin. Then, simulation results illustrate the effectiveness of the proposed approach.
Keywords: Induction motor, Neural networks, Command filtered control, Backstepping

1. Introduction. In the past decades, induction motors (IMs) have been widely used in
industrial applications because of their simple and robust construction, low cost, high reli-
ability and ruggedness. However, the control of IMs is complex due to its highly nonlinear,
multivariable dynamic model. Hence, many control techniques have been developed to
control IMs, such as sliding mode control [1], backstepping control [2] and other control
methods [3]. Backstepping control is considered to be a powerful tool for the design of
controllers for nonlinear systems. However, there are some drawbacks in backstepping
approach. One problem is that certain functions must be linear in the unknown system
parameters. Another limitation is the “explosion of complexity” caused by the repeated
differentiations of virtual input. Theoretically, the calculation of virtual control deriva-
tion is simple, but it can be quite tedious and complicated in practical applications when
n is larger than three because the desired controller u will include the derivation of αn,
which requires the second derivation of αn−1 and so on. To overcome these problems,
a command filtered backstepping technique is proposed to approximate the derivative of
the virtual control by utilizing the output of a command filter at each step of the adaptive
backstepping approach [4, 5]. In addition, NN approximation method has been used in
many applications, mainly by its inherent capability of modeling and controlling highly
uncertain, nonlinear, and complex systems [6, 7]. Therefore, NNs can be employed to
control the systems which are too complex to have a precise mathematical model.

Motivated by the above observations, NN approximation-based command filtered adap-
tive backstepping control is proposed for the IMs system in this paper. The benefits of the
presented approach include. (1) The command filtered control technique is proposed to
overcome the problem of “explosion of complexity”. (2) NNs are used to approximate the
unknown nonlinear functions to solve the problem of the unknown system parameters. It
is shown that the proposed approach can guarantee that the tracking error can converge
to a small range of the origin and all the closed-loop signals are bounded. Simulation
results illustrate the effectiveness of the proposed approach.
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The rest of the paper is organized as follows. Section 2 describes the mathematical
model of IM drive system. The command filtered neural adaptive backstepping control
is designed in Section 3. In Section 4, the simulation results are given. Finally, some
conclusions are presented.

2. Mathematical Model of the IM Drive System. Induction motor’s dynamic math-
ematical model can be described in the well known (d-q) frame as follows [8]:

dω
dt

= npLm

LrJ
ψdiq − TL

J
,

diq
dt

= −L2
mRr+L2

rRs

σLsL2
r

iq − Lmnp

σLsLr
ωψd − npωid − LmRr

Lr

iqid
ψd

+ 1
σLs

uq,
dψd

dt
= −Rr

Lr
ψd + LmRr

Lr
id,

did
dt

= −L2
mRr+L2

rRs

σLsL2
r

id + LmRr

σLsL2
r
ψd + npωiq + LmRr

Lr

i2q
ψd

+ 1
σLs

ud,

(1)

where σ = 1 − L2
m

LsLr
. ω, Lm, np, J , TL and ψd denote the rotor angular velocity, mutual

inductance, pole pairs, inertia, load torque and rotor flux linkage, respectively. id and iq
stand for the d-q axis currents. ud and uq are the d-q axis voltages. Rs and Ls mean the
resistance, inductance of the stator. Rr and Lr denote the resistance, inductance of the
rotor. For simplicity, the following notations are introduced: x1 = ω, x2 = iq, x3 = ψd,

x4 = id, a1 = npLm

Lr
, b1 = −L2

mRr+L2
rRs

σLsL2
r

, b2 = − npLm

σLsLr
, b3 = np, b4 = LmRr

Lr
, b5 = 1

σLs
,

c1 = −Rr

Lr
, d2 = LmRr

σLsL2
r
. By using these notations, the dynamic model of IM driver system

can be described by the following differential equations:
ẋ1 = a1

J
x2x3 − TL

J
,

ẋ2 = b1x2 + b2x1x3 − b3x1x4 − b4
x2x4

x3
+ b5uq,

ẋ3 = c1x3 + b4x4,

ẋ4 = b1x4 + d2x3 + b3x1x2 + b4
x2
2

x3
+ b5ud.

(2)

In this paper, the radial basis function (RBF) neural network will be used to ap-
proximate the unknown continuous function φ(z) : Rq → R as φ̂(z) = ϕ∗TP (z) where
z ∈ Ωz ⊂ Rq is the input vector with q being the neural network input dimension,
ϕ∗ = [ϕ∗

1, . . . , ϕ
∗
n]
T ∈ Rn is the weight vector, P (z) = [p1(z), . . . , pn(z)]

T ∈ Rn is the basis
function vector with n > 1 being the neural network node number, and pi(z) are chosen as

the commonly used Gaussian function in the following form: pi(z) = exp
[
−(z−νi)

T (z−νi)

q2i

]
,

i = 1, 2, . . . , n where νi = [νi1, . . . , νiq]
T is the center of the receptive field and qi is the

width of the Gaussian function. It has been proved in [9] that, for given scalar ε > 0,
by choosing sufficiently large l, the RBF neural network can approximate any continuous
function over a compact set Ωz ∈ Rq to arbitrary accuracy as φ(z) = ϕTP (z) + δ(z) ∀
z ∈ Ωz ⊂ Rq where δ(z) is the approximation error, satisfying |δ(z)| ≤ ε and ϕ is an un-
known ideal constant weight vector, which is an artificial quantity required for analytical
purpose. Typically, ϕ is chosen as the value of ϕ∗ that minimizes |δ(z)| for all z ∈ Ωz.

Lemma 2.1. The command filter is defined as

φ̇1 = ωnφ2

φ̇2 = −2ζωnφ2 − ωn(φ1 − α1)

If the input signal α1 satisfies |α̇1| ≤ ρ1 and |α̈1| ≤ ρ2 for all t ≥ 0, where ρ1 and ρ2 are
positive constants and φ1(0) = α1(0), φ2(0) = 0, then for any µ > 0, there exist ωn > 0
and ζ ∈ (0, 1], such that |φ1 − α1| ≤ µ, |φ̇1|, |φ̈1| and |

...
φ1| are bounded.



ICIC EXPRESS LETTERS, VOL.10, NO.5, 2016 1047

3. Adaptive Neural Command Filtered Control for IMs. In this section, we will
present an adaptive neural command filtered control for IMs via backstepping.

Step 1: For the reference signal x1d, define the tracking error variable as z1 = x1−x1d.
Consider Lyapunov function candidate as V1 = J

2
z2
1 , and the time derivative of V1 is

computed by V̇1 = Jz1ż1 = z1(a1x2x3 − TL − Jẋ1d).
In this paper, due to the parameter TL being bounded in practice system, we assume

the TL is unknown but its upper bound is d > 0. Namely, 0 ≤ TL ≤ d. Obviously,
−z1TL ≤ 1

2ε25
z2
1 + 1

2
ε2
5d

2, where ε5 is an arbitrary small positive constant. Then we can get

V̇1 ≤
1

2
ε2
5d

2 + z1 (x2 − Jẋ1d + f1) (3)

where f1(Z) = a1x2x3 + 1
2ε25
z1 − x2, Z = [x1, x2, x3, x4, x1d, ẋ1d]. According to the RBF

neural network approximation property, for given ε1 > 0, there exists a RBF NN ϕT1 P1(Z)
such that f1(Z) = ϕT1 P1(Z) + δ1(Z), where δ1(Z) is the approximation error and satisfies
|δ1| ≤ ε1. Consequently, a straightforward calculation produces the following inequality.

z1f1(Z) = z1

(
ϕT1 P1(Z) + δ1(Z)

)
≤ 1

2l21
z2
1 ∥ϕ1∥2 P T

1 (Z)P1(Z) +
1

2
l21 +

1

2
z2
1 +

1

2
ε2
1 (4)

Construct the virtual control law α1 as α1 = −k1z1 − 1
2
z1 − 1

2l21
z1θ̂P

T
1 P1 + Ĵ ẋ1d, with

k1 > 0 being a constant and θ̂ is the estimation of the unknown constant θ which will
be specified later. Let α1 pass through the command filter to obtain x1,c. And we have
z2 = x2 − x1,c. Substituting (4) into (3), we can obtain

V̇1 ≤ −k1z
2
1 +

1

2
ε2
5d

2 + z1(x1,c − α1) +
1

2
l21 +

1

2
ε2
1 (5)

+
1

2l21
z2
1

(
∥ϕ1∥2 − θ̂

)
P T

1 P1 + z1z2 + z1

(
Ĵ − J

)
ẋ1d

Step 2: Differentiating z2 gives ż2 = ẋ2 − ẋ1,c = b1x2 + b2x1x3 − b3x1x4 − b4
x2x4

x3
+

b5uq − ẋ1,c. Now choose the Lyapunov function candidate as V2 = V1 + 1
2
z2
2 . Obviously,

the time derivative of V2 is given by

V̇2 ≤ −k1z
2
1 +

1

2
ε2
5d

2 + z1(x1,c − α1) +
1

2l21
z2
1

(
∥ϕ1∥2 − θ̂

)
P T

1 P1

+
1

2
l21 +

1

2
ε2
1 + z1z2 + z1

(
Ĵ − J

)
ẋ1d + z2(f2 + b5uq − ẋ1,c) (6)

where f2(Z) = b1x2 + b2x1x3 − b3x1x4 − b4
x2x4

x3
= ϕT2 P2(Z) + δ2(Z). Similarly, for given

ε2 > 0, we can get

z2f2(Z) ≤ 1

2l22
z2
2 ∥ϕ2∥2 P T

2 (Z)P2(Z) +
1

2
l22 +

1

2
z2
2 +

1

2
ε2
2 (7)

The control law uq is designed as

uq =
1

b5

(
−k2z2 −

1

2
z2 − z1 + ẋ1,c −

1

2l22
z2θ̂P

T
2 P2

)
(8)

Substituting (7) and (8) into (6), we can obtain

V̇2 ≤ −k1z
2
1 − k2z

2
2 +

1

2
ε2
5d

2 + z1(x1,c − α1) +
1

2
l21 +

1

2
l22 +

1

2
ε2
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1

2
ε2
2

+
1

2l21
z2
1

(
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P T

1 P1 +
1
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2
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)
P T

2 P2 + z1

(
Ĵ − J

)
ẋ1d (9)
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Step 3: For the reference signal x3d, define the tracking error variable as z3 = x3−x3d.
From the third differential equation of (2), one has ż3 = ẋ3 − ẋ3d. Choose the Lyapunov

candidate function as V3 = V2 + 1
2
z2
3 . Then the time derivative of V3 is given by

V̇3 ≤ −k1z
2
1 − k2z

2
2 + z1 (x1,c − α1) +

1

2
l21 +

1

2
l22 +

1

2
ε2
1 +

1

2
ε2
2 + z1

(
Ĵ − J

)
ẋ1d (10)

+
1

2l21
z2
1

(
∥ϕ1∥2 − θ̂

)
P T

1 P1 +
1

2l22
z2
2

(
∥ϕ2∥2 − θ̂

)
P T

2 P2

+z3 (c1x3 + b4x4 − ẋ3d) +
1

2
ε2
5d

2

Construct the virtual control law α2 as

α2 =
1

b4
(−k3z3 + ẋ3d − c1x3) (11)

Similarly, let α2 pass through the command filter to obtain x2,c. In addition, defining
z4 = x4 − x2,c and substituting (11) into (10) result in

V̇3 ≤ V̇2 − k3z
2
3 + b4z3z4 + b4z3(x2,c − α2) (12)

Step 4: At this step, we will construct the control law ud. Define z4 = x4 − x2,c

and choose V4 = V3 + 1
2
z2
4 . Then, we have V̇4 = V̇3 + z4(f4 + b5ud), where f4(Z) =

b1x4 + d2x3 + b3x1x2 + b4
x2
2

x3
= ϕT4 P4(Z) + δ4(Z). Similarly,

z4f4(Z) ≤ 1

2l24
z2
4 ∥ϕ4∥2 P T

4 (Z)P4(Z) +
1

2
l24 +

1

2
z2
4 +

1

2
ε2
4 (13)

We design ud as

ud =
1

b5

(
−k4z4 −

1

2
z4 − b4z3 + ẋ2,c −

1

2l24
z4θ̂P

T
4 P4

)
(14)

Design θ = max{||ϕ1||2, ||ϕ2||2, ||ϕ4||2}, θ̃ = θ̂ − θ, J̃ = Ĵ − J . Furthermore, it can be
verified easily that

V̇4 ≤ −
4∑
i=1

kiz
2
i + z1(x1,c − α1) + b4z3(x2,c − α2) +

1

2
l21 +

1

2
ε2
1 +

1

2
l22 +

1

2
ε2
2 (15)

+
1

2
l24 +

1

2
ε2
4 +

1

2
ε2
5d

2 − 1

2l21
z2
1 θ̃P

T
1 P1 −

1

2l22
z2
2 θ̃P

T
2 P2 −

1

2l24
z2
4 θ̃P

T
4 P4 + z1J̃ ẋ1d

Then we choose the Lyapunov function as V = V4 + 1
2r1
θ̃2 + 1

2r2
J̃2. And the time

derivative of V is given by

V̇ ≤ −
4∑
i=1

kiz
2
i + z1(x1,c − α1) + b4z3(x2,c − α2) +

1

2
l21 +

1

2
ε2
1 +

1

2
l22 (16)

+
1

2
ε2
4 +

1

2
ε2
5d

2 +
1

2
ε2
2 +

1

2
l24 +

J̃

r2

(
r2z1ẋ1d +

˙̂
J
)

+
1

r1
θ̃

(
˙̂
θ − r1

2l21
z2
1P

T
1 P1 −

r1
2l22

z2
2P

T
2 P2 −

r1
2l24

z2
4P

T
4 P4

)
We choose the adaptive law as

˙̂
θ =

r1
2l21

z2
1P

T
1 P1 +

r1
2l22

z2
2P

T
2 P2 +

r1
2l24

z2
4P

T
4 P4 −m1θ̂,

˙̂
J = −r2z1ẋ1d −m2Ĵ (17)

where m1, m2 and li for i = 1, 2, 4 are positive constants.
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Proof: To address the stability analysis of the resulting closed-loop system, substitut-
ing (17) into (16), we have

V̇ ≤ −
4∑
i=1

kiz
2
i +

1

2
l21 +

1

2
ε2
1 +

1

2
l22 +

1

2
ε2
2 +

1

2
l24 +

1

2
ε2
4 +

1

2
ε2
5d

2 (18)

−m1θ̃θ̂

r1
− m2J̃ Ĵ

r2
+ z1(x1,c − α1) + b4z3(x2,c − α2)

From |xi,c − αi| < µ and using the Young’s inequalities, we can get z1 (x1,c − α1) ≤
z2
1 + 1

4
µ2, b4z3 (x2,c − α2) ≤ b24

4
µ2 + z2

3 , −θ̃θ̂ ≤ − θ̃2

2
+ θ2

2
, −J̃ Ĵ ≤ − J̃2

2
+ J2

2
, and (18) can

be rewritten in the following inequality

V̇ ≤ −(k1 − 1)z2
1 − k2z

2
2 − (k3 − 1)z2

3 − k4z
2
4 −

m1θ̃
2

2r1
− m2J̃

2

2r2
+

1

2
ε2
5d

2

+
m1θ

2

2r1
+
m2J

2

2r2
+

1

2
l21 +

1

2
ε2
1 +

1

2
l22 +

1

2
ε2
2 +

1

2
l24 +

1

2
ε2
4 +

1

4
µ2

(
1 + b24

)
≤ −aV + b (19)

where a = min {2(k1 − 1)/J, 2k2, 2(k3 − 1), 2k4,m1,m2} and b = 1
2
l21 + 1

2
ε2
1 + 1

2
l22 + 1

2
ε2
2 +

1
2
l24 + 1

2
ε2
4 + 1

2
ε2
5d

2 + m1θ2

2r1
+ m2J2

2r2
+ 1

4
µ2 (1 + b24). Then, (19) implies that

V (t) ≤
(
V (t0) −

b

a

)
e−a(t−t0) +

b

a
≤ V (t0) +

b

a
, ∀t ≥ t0 (20)

All zi (i = 1, 2, 3, 4), J̃ and θ̃ belong to the compact set

Ω =

{(
zi, J̃ , θ̃

) ∣∣V ≤ V (t0) +
b

a
, ∀t ≥ t0

}
Namely, all the signals in the closed-loop system are bounded. Especially, from (20) we
can get limt→∞ z2

1 ≤ 2b
a
. By the definitions of a and b, it is proved that to get a small

tracking error we can take ri large but li and εi small enough after giving the parameters
ki and mi.

4. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulation is run for the induction motors with the parameters: J = 0.0586Kgm2,
Rs = 0.1Ω, Rr = 0.15Ω, Ls = Lr = 0.0699H, Lm = 0.068H, np = 1. The simulation
is carried out under the zero initial condition. The reference signals are taken as x1d ={

80, 0 ≤ t ≤ 8,
85, t ≥ 8

and x3d = 1. TL is chosen as TL =

{
0.5, 0 ≤ t ≤ 5,
1.0, t ≥ 5.

The RBF NNs are chosen in the following way. The NNs ϕT1 P1(Z), ϕT2 P2(Z) and
ϕT4 P4(Z) contain eleven nodes with centers spaced evenly in the interval [−9, 9] and widths
being equal to 2, respectively. The proposed adaptive neural controllers are used to control
the induction motor. The control parameters are chosen as: k1 = 20, k2 = 36, k3 = 12,
k4 = 16, r1 = r2 = 0.1, m1 = m2 = 0.2, l1 = l2 = l4 = 0.01, ζ = 0.5, ωn = 5000.

Figure 1 displays the reference signal x1 and x1d and Figure 2 shows the reference
signal x3 and x3d. It can be observed from Figure 1 and Figure 2 that the system output
can track the given reference signals well. Figure 3 and Figure 4 show the trajectories
of uq and ud. It can be seen that the controllers are bounded into a certain area. We
can see a load torque disturbance appeared at t = 5s from Figure 3. However, from
the above simulation results, it is clearly shown that the proposed control method can
track the reference signal quite well even under parameter uncertainties and load torque
disturbance.
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5. Conclusion. Neural network-based adaptive command filtered backstepping approach
has been presented for induction motors in this paper. This method can overcome the
problem of “explosion of complexity” inherent in the traditional backstepping design. The
designed controllers guarantee the speed tracking error can converge to a small neighbor-
hood of the origin. Simulation results testify its effectiveness in the IM drive system.
In the future work, we will focus on the practical application of the proposed control
algorithm.
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