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ABSTRACT. In this paper, a robust nonlinear tracking control design for an ionic polymer
metal composite (IPMC) is proposed by using a multi-objective particle swarm optimiza-
tion (MOPSO)-based operator approach. Addressing the difficulties in obtaining the PI
control parameters (K, K;) of the former proposed nonlinear robust tracking control sys-
tem based on operator-based robust right coprime factorization (RRCF') approach, in this
paper, how to obtain the K, and K; is investigated by using MATLAB system identifica-
tion toolboxr and MOPSO algorithm. That is, firstly, a new equivalent transfer function
model of the robust stable control system of IPMC' is identified based on the MATLAB
system identification toolbox. For the obtained equivalent transfer model, an MOPSO
algorithm is used to obtain the K, and K;. Finally, the effectiveness of the proposed
method is also verified by simulation results.

Keywords: IPMC, Robust tracking control, MATLAB system identification toolbox,
MOPSO

1. Introduction. Similar to piezoelectric materials, the IPMC, also called artificial mus-
cle, belongs to the category electroactive polymers (EAP), which is one of the most promis-
ing EAP actuators, and has been used in the bio-robotics community. An IPMC sample
consists of a thin ion-exchange membrane (e.g., Nafion) plated on both surfaces with a
noble metal as electrodes. Because IPMCs have the following characteristics: large strain
and stress induced electrically, light in weight, small and simple mechanisms, small electric
consumption, and low drive voltage, which have been widely used in the developments of
miniature robots, biomimetic sensors, actuators, and transducers [1].

The dynamic mode of IPMC is usually broken up into two different types: linear model
and nonlinear model. Linear models have no prior knowledge or some knowledge of the
system. Nonlinear models have a comprehensive knowledge of the physics system deriva-
tion [2]. For linear models, linear quadratic regulator (LQR) and proportional integral
derivative (PID) have been used in precise displacement control. However, the IPMC
shows mainly nonlinear behaviors in characteristics of large strain and stress. Moreover,
the control performance is affected by the parameter variations and various disturbances
easily, and it is difficult to obtain a precise mathematical model. So, in order to improve
the control performance and achieve robust tracking, some approaches such as adap-
tive control scheme, neural network control method, and fuzzy control algorithm have
been designed in precision position control and achieved some good performance results.
However, adaptive control scheme demands real-time seriously and has limitations in the
system structure with uncertainties. Neural network control method has to retrain the
network when environment changes because of its own self-learning feature. The track
convergence rate is slow and the robustness of the control system is not well guaranteed by
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using fuzzy control approach. Therefore, a practical mathematical model and an effective
control strategy are desirable in designing precision displacement control system for the
IPMC. As we all know, the operator-based RRCF approach has been a promising control
strategy for analysis, stabilization and control of nonlinear system with disturbances and
model uncertainties [3,4]. Especially, the operator-based RRCF approach has attracted
much attention due to its convenience in researching input-output stability problems of
the nonlinear system with uncertainties. Addressing the IPMC with unknown uncer-
tainties consisting of modelling error and external disturbances, a robust stable control
system to IPMC has been proposed by using the operator-based RRCF approach, the
robust stability of the designed system was guaranteed, and the tracking performance
was also guaranteed by the PI tracking controller [5,6].

However, because the equivalent block of the stabilizing system is also nonlinear process,
it is difficult to design the optimal control parameters (K, K;) of PI controller. Therefore,
for the purpose of real application, how to obtain the K, and Kj; is also a key issue. As
we all know, some useful methods in designing K, and K; are based on the fundamen-
tal assumption that the controlled plant is a linear system with the identified transfer
function. Moreover, nowadays there are many swarm intelligence approaches used to op-
timize the controllers parameters [7-11] for the linear process. In nature, most controllers
optimization and design problems are multi-objective, since they normally have several
(possibly conflicting) objectives that must be satisfied at the same time. At this point,
the definition of a multi-objective optimization problem can be more effective. The multi-
objective techniques offer advantages when compared with single objective optimization
techniques because they may produce a solution with different tradeoffs among different
individual objective. Compared with single evolutional algorithm, the multi-objective
particle swarm optimization (MOPSO) has a simpler computational paradigm and has
shown faster convergence and better computational efficiency.

Motivated by the aforementioned issues, this paper investigated how to optimize the
control parameters (K, K;) using MOPSO algorithm to improve the tracking performance
for the former proposed robust control system. Namely, firstly, for the obtained stabilizing
system based on operator-based RRCF approach, the MATLAB system identification
toolbox is used to identify the equivalent transfer function. Addressing the equivalent
linear model, the control parameters (K, K;) are designed by using MOPSO algorithm.
Finally, the simulation results are also given to confirm the effectiveness of the proposed
method.

The outline of the paper is organized as follows. In Section 2, the preliminaries and
problem statement are introduced. Tracking control design and control parameters opti-
mization are investigated in Section 3. The simulation results are given in Section 4, and
Section 5 is the conclusion.

2. Preliminaries and Problem Statement.

2.1. Nonlinear dynamic model of IPMC. A nonlinear dynamic model with uncer-
tainties of IPMC is modeled by the following equations [6]:

(
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where, x is the state variable, u is the control input voltage, y is the curvature output, R,
is the electrodes resistance, R, is the ion diffusion resistance, Y, is the equivalent Youngos
modulus of IPMC, «q is the coupling constant, K. is the effective dielectric constant of
the polymer, h is the thickness of IPMC, a = %, b= ZQT—(;;E, F' is Faraday’s constant, C'~
is the anion concentrations, R is the gas constant, T is the absolute temperature, and
AP is uncertainties consisting of measurement error of parameters and model error of the

IPMC.

2.2. Operator-based robust right coprime factorization. In this section, some basic
definitions and notations of operator, right coprime factorization, and RRCF are outlined.

Definition 2.1. An operator () : X — Y is a mapping defined from the input space X to
the output space Y, and can also be expressed in the mathematical form as y(t) = Q(u)(t)
where u(t) is the element of X and y(t) is the element of Y. Let @ : X — Y be an
operator mapping from X to Y, and denoted by D(Q) and R(Q), respectively, the domain
and range of Q. If the operator Q : D(Q) — Y satisfies addition rule and multiplication
rule

Q : ary + bre — aQ(x1) + bQ(x2)
for all x1, zo € D(Q) and all a,b € C, then Q is said to be linear; otherwise, it is said to
be nonlinear.

The operator based nonlinear feedback control systems are shown in Figure 1, where U
and Y are used to denote the input space and output space of a given plant operator P,
respectively, i.e., P: U — Y. P is nominal plant, AP is unknown bounded uncertainties,
and P+ AP is the real plant. In the operator based control system shown in Figures 1(a)
and 1(b), the right factorization, right coprime factorization, and RRCF were defined as
follows, respectively.

P H
relU eeU B_l =D7] OUEW= N y€=Y
- ‘ rel eeU m yeY
beU bell
- a

(a) (b)

FIGURE 1. (a) Operator based nonlinear feedback system, (b) operator
based nonlinear feedback system with uncertainties

Definition 2.2. The given plant operator P : U — Y is said to have a right factoriza-
tion, if there exists a linear space W and two stable operators D : W — U and N : W —
Y such that P = ND™! where D is invertible. Such a factorization of P is denoted by
(N, D) and W is called a quasi-state space of P. The factorization is said to be coprime,
or P is said to have a right coprime factorization in Figure 1(a), if there exist two
stable operators A:Y — U and B : U — U, satisfying the Bezout identity

AN + BD =T, for some T € u(W,U) (2)

Generally speaking, for the corresponding control system with uncertainties, let the Bezout
identity of the nominal process and the real process be AN + BD = M € U(W,U),
A(N 4+ AN) + BD = M, respectively. If

I(A(N +AN) — ANYM || < 1 (3)
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then the system shown in Figure 1(b) is BIBO stable, and is called robust right coprime
factorization.

It is worth mentioning that the initial state should also be considered, that is, AN (wy, to)
+BD(wo, ty) = M(wo, to) should be satisfied. In this paper, ty = 0 and wy = 0 are selected.

2.3. Problem statement. For the model described in (1), there exist the unknown
uncertainties AP in the IPMC dynamic model, and the uncertainties are unknown but
bounded. For the model (1), the right factorizations were designed in [5,6],

( 1—e@®\ e® (1 — el —w(t)
w(t)e—«® 1 — e—w(®)? w(t)
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Considering the nonlinear IPMC with bounded uncertainties, a robust stable control

system based on Figure 1(b) has been investigated in [5,6], and the operators A and B
were designed as,

Skeb(Ry + Ro)ir(t) (1 -

D(w)(t) =
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The conditions of robust stability have been given. Moreover, the tracking control

scheme was designed based on the obtained stabilizing system and shown in Figure 2.
The controller C' was designed as,

W (t) = K,é(t) + K, / &(r)dr (6)

where, K, and K; were the parameters of PI controller. The control output y can track
the desired reference input 7*, and the detailed proof has been given in [6].

The stabilizing system
*

r e u

‘T—'C s P >

F1GURE 2. The tracking control system

However, because the equivalent block of the stabilizing system is nonlinear process,
how to obtain the optimal K, and Kj is also difficult. As a result, in this paper, a tracking
control design for an IPMC is proposed using a new model equivalent approach by using
MATLAB system identification toolbox and MOPSO algorithm-based operator approach.
Firstly, how to identify an equivalent transfer function model of the obtained stabilizing
system of IPMC using MATLAB system identification toolbox is investigated. Secondly,
addressing the identified linear model, a proportional integral controller is designed to
realize perfect tracking control. Finally, an MOPSO algorithm is used to obtain the
optimal control parameters K, K;.
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3. Tracking Control Design and Optimization.

3.1. Equivalent model identification using MATLAB system identification tool-
box. In this paper, the stabilizing system in Figure 1(b) is identified as a new equivalent
model by using the MATLAB system identification toolbox. For the identified equivalent
transfer function, it is easy to obtain the tracking conditions and the control parameters
K, and K;. As we all know, the MATLAB system identification toolbox is to build the
accurate and simplified models of the complex systems by using the time-series data.
It provides some useful tools for creating the mathematical models of dynamic systems
based on the observed input-output data. The identification process amounts to repeat-
edly selecting a model structure, computing the best model in the structure, and the final
objective is to see if they are satisfied by evaluating the main properties of this model.
The program cycle can be itemized as follows.

(1) Design an experiment and collect input-output data from the process to be identi-
fied.

(2) Select and define a model structure (a set of candidate system descriptions) within
which a model is to be found.

(3) Compute the best model in the model structure according to the input-output data
and a given criterion of fit.

(4) If the model is good enough, then stop; otherwise go back to (2) to try another
model set.

In this paper, the input data is the reference of the stabilizing system, the output data
is the response of the stabilizing system. Suppose that the identified transfer function
is the stabilizing system, so in step (2), select transfer function as the model structure.
After step (4), choose the model which has the best fit as the new model. As for the
obtained new equivalent linear transfer model, a PI tracking system is easily designed
in Figure 2. Moreover, in order to obtain more suitable control parameters K, and K;
for improving further tracking obtainment, an MOPSO algorithm is used to identify the
optimal K, and K;.

3.2. Parameters optimization using MOPSO algorithm.

3.2.1. Particle swarm optimization. Particle swarm optimization (PSO) is a popular com-
putational and search technique developed by Kennedy and Eberhart that is based on the
social behavior of birds flocking to look for food [10]. In PSO, a population of possible
solutions (called particles) are first initialized. These particles are then allowed to explore
through a solution search space looking for the optimum solution. Each particle maintains
the best solution it has found thus far (particle best) as well as the best solution that
the group (called particle swarm) has found thus far (global best). The direction of the
search is then updated based on the values of particle bests, and the group is global best.
In the canonical PSO, each particle ¢ has position z; and velocity v; that is updated at
each iteration as follows,
Velocity Equation:

U; = wv; + Ciri; (pi — ) + Cora; (g — 23) (7)
Position Equation:
%=zt (8)

The factors w and C are the particles inertia and self-confidence factors, respectively.
The confidence factor for the entire swarm is expressed by Cs. The quantities r; and
ro are the positive random numbers drawn from a uniform distribution. p; is the best
position found so far by particle, and p, is the global best so far found by the swarm.
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3.2.2. Multi-objective particle swarm optimization. In order to extend the PSO to solve
multi-objective problems, the single global best is extended into a fixed-sized archivement
of non-dominated solutions accumulated during the search process [11]. The crowding
distance density estimator is also incorporated in selecting the global best and in the
deletion of the low ranking non-dominated solutions in the sorted archive. The main
steps of the MOPSO algorithm can be summarized as follows.

e Position and velocity initialization.

e Initialize each particle personal best.

e Store the non-dominated solution into the global best archivement.

e Repeat the following until the maximum number of iterations is reached or a con-
vergence criterion is met.

(1) Sort the archivement based on crowding distance in descending order.

(2) For each particle, randomly select a global best from the top 10% of the
archivement, and use it to update the velocity and position.

(3) Update each particle’s personal best: if the particle’s new position dominates
the current personal best, then replace it with the particle’s new position. If they
are both non-dominated, there is a 50% of chance the personal best will be replaced.

(4) Update the global best archivement: insert new non-dominated solutions into
archivement and eliminate archived solutions that are dominated by the new so-
lutions. If the archivement is full, Crowing Distance is adopted to maintain the
diversity and applied to removing the extra ones.

Designing the appropriate fitness functions is the key to solving the multi-objective op-
timization problems. In the equivalent stabilizing system, it is expected that the position
could achieve the desired output through a stationary process in a relatively short time.
In other words, the three indices: setting time ¢, maximum overshoot M, steady state
error ez, should be minimum. Therefore, setting time, maximum overshoot and steady
state error are selected as performance indices. The fitness functions in the MOPSO algo-
rithm are expressed as follows: f1 =5, fo = M), and f3 = e,s, where ¢ is the setting time
of the control system, and is also called as transition time; M, is the maximum overshoot
which reflects the stability of the transition process of the IPMC control system; e is
the steady state error which reflects the deviation of the actual output and the expected
output of the system, and it describes the control accuracy of the control system. In the
training, the ty, M, and e,; should be as small as possible by tuning K, and K.

4. Simulation. Some identified physical parameters based on the proposed method in
[5] are shown in Table 1. In the simulation, the robust stable simulation result of the
proposed IPMC control system based on Figure 1(b) is shown in Figure 3. In equivalent
identification, the reference control input is 1 (1/m), and the response is the input-out
data of the Matlab system identification toolbox. In Figure 4, the transfer function “tfl,
tf2, tf3” are the first, second, third order transfer function and the tf2 which is second
order has the best fit for the model of stabilizing system. So, the equivalent transfer
model of the stabilizing system in Figure 1(b) can be identified as,

0.24
G(s) = 9
()= 533035 + 14.33 ©)
The parameters K, and K; are optimized by the MOPSO algorithm. The parameters
of MOPSO are initialized as follows.

e The population size is set to 40.

e The maximum generations are set to 100.

e The inertia weight w is set to 0.725.

e The learning factors C; and C are set to 2.
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TABLE 1. Parameters of the model
L h W T R, R,
50[mm]  200[um] 10[mm] 290[K] 18[9 60[Q]
Y. Qg c-! F R K.

0.056[Gpa] 0.129[J/C] 981[mol/m?] 96487[C/mol] 8.3143[J/mol.K] 1.12x105[F /m]
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TABLE 2. Optimized PI controllers

Solutions K, K; ts M, e

The first solution of MOPSO 580 3.99 0.1 0.04 0

The second solution of MOPSO 600 3.95 0.09 0 0
The third solution of MOPSO 610 1.94 0.13 0 0.07
The fourth solution of MOPSO 585 2.31 0.1 0 0.06
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FI1GURE 5. The simulation result based on the proposed method

Using the MOPSO algorithm, a large number of optimal solutions are achieved. Due
to the limitation in space, only the best four groups identified parameters are listed in
Table 2. In order to verify the effectiveness of the PI parameters, the obtained best four
group parameters by the MOPSO algorithm have been confirmed in the PI controller,
respectively. In the simulation experiment, K, is in the range [550, 650], K; is in the range
[0, 5] and simulation time is T = 10sec. Step responses of the four group parameters are
shown in Figure 5, respectively. In order to observe more clearly, some key parts of Figure
5 are amplified. Based on the part of amplification, it is clear that the controller outputs
of the four group parameters have little differences. It also shows that the parameters of
the controller have the characteristics of uncertainly and non-uniqueness. From Table 2
and Figure 5, the setting time is less than 0.15sec, and the overshoot and the steady error
is so small to meet the demand.

5. Conclusions. In this paper, a robust nonlinear tracking control for IPMC was inves-
tigated by using MOPSO-based operator approach. The designed robust stable system
based RRCF approach was identified as an equivalent transfer function model. The pa-
rameters of PI tracking controller were optimized by using MOPSO. Finally, the simula-
tion results were given to show the effectiveness of the proposed method. The future work
will develop a new compensation method to design the perfect tracking control system.
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