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Abstract. Twin Support Vector Machine (TWSVM) has faster speed than traditional
support vector machine, but without the structure risk minimization (SRM) and not con-
sidering the effect of different sample points for optimal classification plane. To solve
this problem, a method based on fuzzy margin twin support vector machine with dual
membership (DM-FMTWSVM) algorithm is presented. In order to weaken the impact of
noise and isolated points of TWSVM classification, the fuzzy parameters and the regular-
ization term are introduced in TWSVM. Therefore, it improves range and classification
accuracy of twin support vector machine.
Keywords: Fuzzy twin support vector machine, Dual membership, Margin, SRM

1. Introduction. Support Vector Machine (SVM) [1] proposed by Vapnik is a promising
machine learning technique. It has shown powerful ability in machine learning on a small
sample, nonlinearity and high dimension. Therefore, it is widely used in the field of text
classification [2], image classification [3] and face recognition [4]. In 2007, Jayadeva et al.
proposed twin support vector machine (TWSVM) [5] classifier for binary classification,
motivated by multisurface proximal support vector machine classification via generalized
eigenvalues (GEPSVM) [6]. TWSVM aims at generating two non-parallel hyperplanes by
solving two smaller-sized quadratic programming problems (QPPs) compared with the
classical SVM, such that each hyperplane is closer to one class and as far as possible from
the other. A major advantage of TWSVM is that it is 4 times faster than SVM, since each
of its QPPs is only roughly of half size. In recent years, some extensions to the TWSVM
have been proposed such as ν-twin support vector machine (ν-TWSVM) [7], least squares
twin support vector machine (LSTWSVM) [8], twin support vector hyphersphere (TSVH)
[9].

However, these algorithms make it difficult to handle the effect of noise samples and
fuzzy samples on the optimal hyperplanes. In this paper, a fuzzy margin twin support
vector machine with dual membership (DM-FMTWSVM) is proposed. To handle the
problem of outliers and noise, a dual fuzzy membership based on the density method
[10,11] is constructed, so that different sample points have different effects on the clas-
sification of the surface. In addition, the empirical risk is minimized in the classical
TWSVM. However, for our DM-FMTWSVM, the structural risk is minimized by adding
a regularization term with the idea of maximizing some margin [12]. The computational
comparison of the DM-FMTWSVM against traditional TWSVM in classification accu-
racy has been made on several UCI datasets for both linear and nonlinear kernels, which
demonstrates the feasibility and validity of our proposed algorithm.
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2. TWSVM. The basic thought of TWSVM is to construct a set of non-parallel hyper-
planes in n-dimension real space Rn: xT ω1 + b1 = 0, xT ω2 + b2 = 0, where ω1, ω2 ∈ Rn

and b1, b2 ∈ R are determined. Consider a binary classification problem with l1 samples
belonging to class +1 and l2 samples belonging to class −1 in the n-dimensional real space
Rn. The positive samples and the negative samples are represented by matrix A ∈ Rl1×n

and B ∈ Rl2×n, respectively. Formally, TWSVM solves the following two QPPs for finding
hyperplanes of the positive and negative, respectively:

min
ω1,b1,ξ2

1

2
(Aω1 + e1b1)

T (Aω1 + e1b1) + c1e
T
2 ξ2

s.t. − (Bω1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0
, (1)

min
ω2,b2,ξ1

1

2
(Bω2 + e2b2)

T (Bω2 + e2b2) + c2e
T
1 ξ1

s.t. (Aω2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0
, (2)

where c1 > 0 and c2 > 0 are penalty parameters, ξ1 and ξ2 are the slack variables.
ξi = max

(
0, 1 − yi(ω

T xi + b)
)

(i = 1, 2) is the loss function. e1 and e2 are vectors of ones
of appropriate dimensions.

3. DM-FMTWSVM. In TWSVM, the same penalties are given to the samples. In
fact, they have different effects on the design of hyperplanes. In addition, noticing the
primal problems of TWSVM, only the empirical risk is implemented. In order to overcome
these two disadvantages, a dual fuzzy margin TWSVM is proposed based on structural
risk minimization principle in this section.

DM-FMTWSVM also finds two nonparallel hyperplanes in Rn: xT ω1 + b1 = 0, xT ω2 +
b2 = 0. The DM-FMTWSVM classifier is obtained by solving the following pair of QPPs:

DM-FMTSVM1

min
ω1,b1,ξ2

1

2
(Aω1 + e1b1)

T (Aω1 + e1b1) +
1

2
γ1ω

T
1 ω1 + c1s2e

T
2 ξ2

s.t. (Bω1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0
,

(3)

DM-FMTSVM2

min
ω2,b2,ξ1

1

2
(Bω2 + e2b2)

T (Bω2 + e2b2) +
1

2
γ2ω

T
2 ω2 + c2s1e

T
1 ξ1

s.t. (Aω2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0
,

(4)

where s1, s2 are the fuzzy membership values of sample sets A and B, respectively. c1, c2

are pre-specified penalty factors. The regularization terms 1
2
γ1ω

T
1 ω1 and 1

2
γ2ω

T
2 ω2 in the

proximal problems (3) and (4) imply to maximize margin between the proximal hyperplane
and the bounding hyperplane as much as possible. Minimization of the regularization
terms of the problem in (3) and (4) is equivalent to maximizing the distance. Using the
K. K. T conditions [13], the Wolfe dual of DM-FMTWSVM is expressed as follows:

max
α

eT
2 α − 1

2
αT G(HT H + γ1E)−1GT α

s.t. 0 ≤ α ≤ c1s2

, (5)

max
β

eT
1 β − 1

2
βT H(GT G + γ2E)−1HT β

s.t. 0 ≤ β ≤ c2s1

, (6)

where H = [A e1], G = [B e2] and E =

(
I 0
0 0

)
. α = (α1, α2, . . . , αl2)

T and

β = (β1, β2, . . . , βl2)
T are the vectors of Lagrange multipliers. A data sample x ∈ Rn

is classified as class r (r = 1, 2), depending on which one of the two hyperplanes it is
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closest to, that is xT ωr + br = min
l=1,2

∣∣xT wl + bl

∣∣, where | · | is the perpendicular distance of

point x from the plane: xT ωl + bl = 0 (l = 1, 2).
DM-FMTWSVM described above can be extended to solve the nonlinear problems

with kernel technique. Once the surfaces of the nonlinear DM-FMTWSVM are obtained,
x ∈ Rn is assigned to class +1 or class −1 in a manner similar to the linear case.

4. Membership Function. In this paper, a fuzzy membership function is constructed
with a dual membership to overcome the problem of noise-sensitive TWSVM. That is,
the sample points near by the class centers and the sample points far away from the class
centers are given different memberships. The one class is determined by the distance
between the point and its class center. The other is determined by the proportion between
the number of its congeneric points and the number of its heterogeneous points in its
neighborhood.

Let the training sample set for T = {(x1, y1, s1), (x2, y2, s2), . . . , (xl, yl, sl)}, where xi ∈
Rn and corresponding binary class labels yi ∈ {−1, +1}. si ∈ (0, 1] indicates the degree
of xi belongs to yi and l is the number of the samples. The following are the definitions
corresponding to the fuzzy membership function.

The distance between sample points is defined as D(xi, xj) = ∥xi − xj∥. The density
of sample points in the same class and the density of sample points in the other class are
defined as

ρ+(xi, R) = M |{xj|D(xj, xi) ≤ R, yj = yi}| ,
ρ−(xi, R) = M |{xj|D(xj, xi) ≤ R, yj ̸= yi}| ,

where M |x| is the number of samples in the set, R is the radius of neighborhood of the
sample points, and its size can be regulated.

It is defined the two class centers as follows O+ =

∑
yi=1

xi

l+
, O− =

∑
yi=−1

xi

l−
, where l+ and l−

are the numbers of the samples in the positive class and the negative class, respectively.
Adjust to the radius of the neighborhood, according to the following formulas:

ρ(O+) =
∣∣{xj|D(xj, O

+) ≤ R+, yj = 1
}∣∣ = a%l+,

ρ(O−) =
∣∣{xj|D(xj, O

−) ≤ R−, yj = −1
}∣∣ = a%l−,

where 0 ≤ a ≤ 100 can be regulated. Define the radius of the positive class and the
negative class: R+ and R−, respectively. In this way the hypersphere composed of class
center and the radius of the class, only contains a% class sample points. Hence, it greatly
reduces the impact of noise and outliers on class radius.

The sample points are divided into two classifications depending on the distances be-
tween the points and their class centers. The membership functions of two sample points
can be designed in two different methods.

According to the following formulas D(xi, O
+) ≤ m1R

+, yi = +1, D(xi, O
−) ≤ m2R

−,
yi = −1, the membership of sample points near the center of the class is given as follows

si =
1

1 + cD(xi,O+)
R+

, yi = +1, si =
1

1 + cD(xi,O−)
R−

, yi = −1, (7)

where 0 < m1 ≤ 1, 0 < m2 ≤ 1 and c > 0 can be regulated. Then according to
the following formulas D(xi, O

+) > m1R
+, yi = +1, D(xi, O

−) > m2R
−, yi = −1, the

membership of sample points far from the center of the class is given as follows.

si =
dρ+(xi, R)

ρ+(xi, R) + ρ−(xi, R)
, (8)

where 0 < d ≤ 1 and R > 0 can be regulated.
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5. Experiment. To compare the performance of DM-FMTWSVM with SVM, TWSVM
and DMFTWSVM (no margin DM-FMTWSVM), we perform some experiments on UCI
data sets [14]. All algorithms are running on Personal Computer with 3 GHz and a
maximum of 4 GB of the memory available. The computer runs Win7 with MATLAB
2011b. The Gaussian kernel function in the experiments is employed. Tenfold cross-
validation is used to select all the optimal parameters over the range {2i|i = −4, . . . , 4}.
The accuracy of the experiment is the average of the values of training set repeated 10
times and the CPU time is running one time with the optimum parameters.

In Table 1 and Table 2, it is easy to see that the accuracy of the proposed algorithm
is better than TWSVM on all datasets, especially in nonlinear case. It is shown that
DM-FMTWSVM has the best binary classification accuracy.

6. Conclusions. In this paper, DM-FMTWSVM is proposed for binary classification.
It is more powerful than the traditional TWSVM by adding a dual membership and the
regularization term in the primal problems of DM-FMTWSVM. This can achieve better

Table 1. Training set performance for linear classifiers

Data Set Performance SVM TWSVM DMFTWSVM DM-FMTWSVM
Breast cancer

200 × 9
Accuracy (%)

Time (s)
68.83
1.21

75.68
0.34

75.75
0.43

76.29
0.37

German
700 × 20

Accuracy (%)
Time (s)

75.00
70.10

76.70
1.79

76.78
2.32

76.82
2.54

Thyroid
140 × 5

Accuracy (%)
Time (s)

89.33
1.50

93.18
0.19

94.67
0.22

94.87
0.21

Ionosphere
351 × 34

Accuracy (%)
Time (s)

86.30
13.92

88.97
0.31

88.77
0.48

89.57
0.47

Sonar
208 × 60

Accuracy (%)
Time (s)

75.89
3.66

76.50
0.18

77.50
0.25

78.33
0.25

Heart
270 × 13

Accuracy (%)
Time (s)

80.00
6.63

83.12
0.22

83.32
0.28

83.63
0.28

Bupa
345 × 6

Accuracy (%)
Time (s)

66.28
11.28

68.20
0.23

69.01
0.40

69.22
0.39

Table 2. Training set performance for nonlinear classifiers

Data Set Performance SVM TWSVM DMFTWSVM DM-FMTWSVM
Breast cancer

200 × 9
Accuracy (%)

Time (s)
77.50
1.76

74.55
0.25

77.28
0.26

78.00
0.24

German
700 × 20

Accuracy (%)
Time (s)

77.57
98.40

76.49
1.59

77.88
2.12

78.29
2.06

Thyroid
140 × 5

Accuracy (%)
Time (s)

95.17
2.08

97.19
0.18

97.30
0.17

97.30
0.18

Ionosphere
351 × 34

Accuracy (%)
Time (s)

90.70
16.80

95.36
0.52

95.36
0.60

96.21
0.59

Sonar
208 × 60

Accuracy (%)
Time (s)

83.92
4.72

85.77
0.31

86.85
0.32

87.84
0.30

Heart
270 × 13

Accuracy (%)
Time (s)

82.70
7.69

77.45
0.38

86.92
0.41

88.69
0.36

Bupa
345 × 6

Accuracy (%)
Time (s)

68.44
12.42

64.91
0.63

71.52
0.52

72.76
0.55
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performance on reducing the effects of outliers than some existing methods. Experimental
results demonstrate the superiority of the approach over the classical TWSVM.
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