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Abstract. Control surface freeplay is an important structural nonlinearity in aeroelas-
tic systems. In this paper, the effect of the control surface freeplay nonlinearity on the
dynamic responses of an airfoil section is studied, and an active vibration suppression
system with compensator is designed. Wagner function and Duhamel formulation are
used to model the aerodynamic loads based on Theodorsen theory. The vibration charac-
teristics of the nonlinear systems with different freeplay gaps are analyzed, and compared
to the linear system without freeplay. Bifurcation and limit cycle oscillations occur due
to the control surface freeplay, and the nonlinear systems are also divergent above the
linear flutter speed. The influence of the freeplay nonlinearity on the closed-loop system
is studied with a controller designed using LQR and over-damping phenomenon is found.
The response speed of the closed-loop system for vibration suppression is improved effec-
tively with the compensator.
Keywords: Airfoil sections, Control surface freeplay, Limit cycle oscillations, Compen-
sator

1. Introduction. Nonlinear aeroelastic systems exhibit a variety of phenomena such as
limit cycle oscillation and chaotic vibration which are different from those of linear systems
and may lead to structural problems and material fatigue [1,2]. Therefore, analysis and
vibration suppression of the nonlinear aeroelastic systems are very important. There are
various nonlinearities in aeroelastic systems and a great deal of research activities have
been devoted to them, especially continuous polynomial nonlinearities [3,4]. However, for
the discontinuous nonlinearities caused by freeplay, further studies are needed.

The control surface freeplay is an important structural nonlinearity in aeroelastic sys-
tems. Vasconcellos et al. [6] assessed different representations for freeplay. Conner et al.
[7] investigated the effect of freeplay on an open-loop system response in numerical and
experimental approach, and the result showed the limit cycle oscillation was observed
when the free stream velocity was far lower than linear flutter speed. Bae et al. [5]
demonstrated that limit cycle oscillations have amplitudes significantly greater than the
size of the freeplay gap. Tang et al. [8] studied limit cycle behavior using harmonic bal-
ance calculations and found that the bifurcation velocities are independent of the freeplay
range. Zhao’s study [9] showed that the jump phenomenon appears in the amplitudes
of limit cycle oscillations with the increase of air speed. Active vibration suppression of
the nonlinear aeroelastic systems has caused widespread concern [10-12,14]. However, in
the process of control system design, the two DOFs’ systems which just consist of plunge
and pitch motions were adopted in structural model and quasi steady assumption was
always used in aerodynamic model [3,12]. Hence, the inertial coupling of control surface
motion and other two motions, and unsteady aerodynamic effect would not be reflected.
In this study, the three DOFs’ structural dynamics equations including the control surface
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motion and unsteady time-domain aerodynamic loads are used to model the aeroelastic
system. Based on the precise representation, the effect of control surface freeplay on both
open-loop and closed-loop aeroelastic system of an airfoil section is analyzed and a novel
active vibration control law with compensator for this kind of nonlinear aeroelastic system
is presented.

The organization of the paper is as follows. Section 2 presents nonlinear aeroelastic
model, including structural dynamics equations and unsteady areodynamic loads. Stabil-
ity and dynamic characteristics analysis are conducted in Section 3. Active control law
with compensator is designed in Section 4. Section 5 draws the conclusions.

2. Aeroelastic Model. The two-dimensional airfoil section with a trailing-edge control
surface is shown in Figure 1. The plunge pitch and control surface motions are denoted
by h, α and β, respectively. The semi-chord length of airfoil section is b. The distance
between the elastic axis and midchord is represented by a and the distance from midchord
to the hinge line of control surface is denoted by c. Kh and Kα are used to represent the
plunge and pitch stiffness and Kβ represents the stiffness of the control surface hinge.

The control surface freeplay nonlinearity produces a piecewise linear change in the
structural stiffness of hinge. The relationship between the restoring moment of the control
surface and its motion is illustrated in Figure 2. δ is the size of the freeplay gap and M̃ (β)
represents the restoring moment. Thus, when the rotation angle of the control surface
β is in the freeplay gap, the stiffness of the control surface hinge is zero; and when β is
beyond the gap, the stiffness is a constant value.

Figure 1. Airfoil section with control surface

Figure 2. Control surface freeplay
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2.1. Structural dynamics equations. Using Lagrange’s equation, the equations of
motion of the two-dimensional airfoil section with three DOFs are written as

Mq̈ + Cq̇ + Kq = Q (1)

where q =
[

h α β
]T

denotes the displacements of the three DOFs’ motion. M, C and
K are the mass matrix, damping matrix and stiffness matrix of the aeroelastic system,
respectively. It should be noted that K is related to the control surface motion β. Q is
the aerodynamic loads.

2.2. Areodynamic loads. The unsteady aerodynamic force and moment in incompress-
ible flow are given using Theodorsen approach [13]. The original aerodynamic loads are
obtained in frequency expressions assuming the airfoil section is in the state of harmonic
vibration. To simulate the arbitrary motions of the system, the time-domain unsteady
aerodynamic loads are needed. Based on the Wagner function, the loads associated with
Theodorsen’s function can be replaced by Duhamel formulation in the time domain

Lc = f (t) φw (0) +

∫ t

0

f (σ)
dφw (t − σ)

dσ
dσ (2)

where f (t) is the function of displacements and velocities of three DOFs motions. And
φw is the approximated Wagner function

φw (t) = 1 − A1e
−b1

V
b

t − A2e
−b2

V
b

t (3)

where A1 = 0.165, A2 = 0.335, b1 = 0.0455 and b2 = 0.3. For the integral items in
Equation (2), it is hard to solve directly. Two augmented variables will be introduced as

vj(t) =

∫ t

0

f(σ)e−bj
V
b

(t−σ)dσ (4)

with j = 1, 2. The time derivative of the introduced variables leads to

dvj (t)

dt
= f (t) − bj

V

b
vj (t) (5)

In matrix representation

v̇ = E1q + E2q̇ + Fv (6)

where E1, E2 and F represent the influence matrices. Then, the aerodynamic loads Q in
Equation (1) can be written as

Q = Mncq̈ + Cncq̇ + Kncq + Dv (7)

where Mnc, Cnc and Knc are used to represent the influence matrices of plunge, pitch and
control surface motions to aerodynamic loads, respectively. D is the influence matrix of
aerodynamic variables, and that is the characterization of unsteady effect.

2.3. State space representation. The nonlinear aeroelastic system can be obtained in
second order ordinary differential equation representations with the interconnection of the
structure dynamics equations and unsteady aerodynamic loads. Substitute Equation (7)
into Equation (2)

(M − Mnc) q̈ + (C − Cnc) q̇ + (K − Knc)q = Dv (8)

Let Mtot = M − Mnc, Ctot = C − Cnc and Ktot = K − Knc. In order to analyze the
stability of the system and design the active control law, the state space representation is
needed. The aeroelastic model above can be written in state space form

ẋ = A (x)x + Bu (9)
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with x =
{

qT q̇T vT
}T

, and u is the scalar control input. The matrix A and B are

A =

 0 I 0

−M−1
totKtot −M−1

totCtot M−1
totD

E1 E2 F

 , B =

 0

M−1
totG

0

 (10)

where G =
[

0 0 1
]T

. Note that the matrix A is dependent on the states of the system
(the motion of control surface), and that makes Equation (9) a nonlinear aeroelastic
system.

3. Stability and Dynamic Characteristics. If the control surface freeplay is not con-
sidered, i.e., δ = 0◦, Equation (9) will be a linear aeroelastic system. The linear flutter
speed VF = 18.2m/s of an airfoil section can be obtained based on the stability theory
of linear systems. While considering the freeplay, the system will present complicated
nonlinear characteristics. We can judge that Hopf bifurcation phenomenon will occur
when the airspeed reaches VB = 4.5m/s which is far lower than VF . VB can be obtained
by analyzing eigenvalues of the Jaccobi matrix of the system. Figure 3 gives the time
histories of pitch motion of the airfoil section with different freeplay gaps under the same
initial conditions. The airspeeds are chosen as 10m/s (between bifurcation speed VB and
linear flutter speed VF ) and 20m/s (a little higher than VF ).

(a) Airspeed being 10m/s

(b) Airspeed being 20m/s

Figure 3. Time histories of pitch motion

Figure 3(a) shows that stable limit cycle oscillations occur in the aeroelastic system
with freeplay nonlinearity. The amplitude of limit cycle oscillation increases with freeplay
gap δ. Figure 4 represents the phase diagram of the pitch motion under the condition that
airspeed V is 10m/s and freeplay gap δ is 2◦. Figure 5 gives the variation of maximum
amplitude of pitch motion versus airspeed. We can see that, when the airspeed is higher
than linear flutter speed VF , both the linear system and the nonlinear system will diverge.
The dynamic responses of pitch motion in this situation are shown in Figure 3(b).
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Figure 4. The phase dia-
gram of pitch motion

Figure 5. The maximum
amplitude of pitch motion

Figure 6. Time histories of
pitch motion with controller

Figure 7. Time histories of
pitch motion with controller
and compensator

4. Control Design. The vibration of the airfoil section may reduce the flight envelope
or cause structure fatigue problems even the damage of aircrafts. It is necessary to
stabilize aeroelastic systems and suppress the vibration. In this paper, LQR method
is used to get the control law, and Kc denotes the obtained control gain matrix. The
control performance is shown in Figure 6. In these simulations, the airspeed is chosen as
V = 20m/s.

Obviously, the systems can converge with the controller. However, the response time
will increase due to the existence of the freeplay and it will be longer with a larger value
of δ. The control surface freeplay impairs the performance of controller and the pitch
motion behaves like a response of an over-damping system. The same problem was also
found in [10].

From the above analysis, in order to obtain ideal vibration suppression performance,
the impact of the freeplay should be considered during the design of controller. Rewrite
the control surface moment rotation relationship as

M̃ (β) = Kββ + KββL1 (β) − KβδL2 (β) (11)

and
L1 (β) = 1

2
[sign (β − δ) − sign (β + δ)]

L2 (β) = 1
2
[sign (β − δ) + sign (β + δ)]

(12)

where sign is a symbolic function. When β is in the freeplay gap, L1 = −1 and L2 = 0.
When β is beyond the freeplay gap, L1 = 0 and L2 = ±1. Obviously, it can be seen that
the difference of freeplay nonlinear system and the linear system is reflected in last two
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terms of the right-hand side of Equation (11). The effect of freeplay can be compensated
with added input uc and the closed-loop system will become

ẋ = Ax + B (−Kcx + uc) (13)

where uc = KββL1 (β) − KβδL2 (β).
In the case of V = 20m/s and δ = 2◦, the simulation results are shown in Figure 7.
It is indicated that the response time of system is obviously reduced under the ef-

fect of the compensator. Over-damping phenomenon disappears and the requirement to
vibration suppression can be met for the airfoil section.

5. Conclusions. The effect of the control surface freeplay on the aeroelastic system of
an airfoil section has been studied in this paper. The three DOFs’ structural dynamics
equations are used. The time-domain unsteady aerodynamic loads for arbitrary motions
of airfoil section are obtained by Wagner function and Duhamel integration. The results
show that bifurcation and limit cycle oscillation occur in the nonlinear aeroelastic system
under a certain airspeed which is far lower than linear flutter speed, and the system is
also divergent above this flutter speed. To suppress the vibration of the airfoil section,
active controller is designed. The time consumed in stabilizing the system increases due
to the control surface freeplay, and has been effectively reduced by the introduction of
compensator in controller.

The future work will consider full three-dimensional wing model with high-aspect ratio
and a more practical controller will be designed with incomplete and noisy measurements.
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