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Abstract. A new nonlinear tracking control method with safety velocity performance is
proposed for an omnidirectional rehabilitative training walker. The goal of our study was
to design an asymptotically stable controller with which users can complete rehabilitation
training under the safety velocity. According to Lyapunov theory, the controller can be
designed to maintain stability in terms of solutions of linear matrix inequalities. We
therefore derive the sufficient conditions for the existence of such a controller with safety
velocity constraints. As an application, our simulation results confirmed the effectiveness
of the proposed method and verified that the walker can provide a safe training velocity.
Keywords: Rehabilitative training walker, Tracking control, Safety velocity, Velocity
constraints performance

1. Introduction. With an aging society, an increasing number of people suffer from
walking impairments due to illnesses or accidents. Therefore, demand for walking re-
habilitation has increased in recent years, leading to an increased need for a walking
training machine that can efficiently conduct a variety of training programs. Omnidirec-
tional rehabilitation training walker (ODW) can help patients move within any radius
in any direction and can also follow special training trajectories [1,2]. To operate effec-
tively in real-world applications, the control algorithm must guarantee that the device
can accurately follow a prescribed trajectory.

An important issue in robotics control, trajectory tracking has been widely studied
[3-5]. Available results, such as adaptive tracking control [6,7], adaptive fuzzy tracking
control [8], adaptive dynamic surface control [9], and backstepping tracking control [10],
have been developed to improve tracking performance. However, a limitation of these
previously published results is that robots are required to provide enough motion velocity
without imposing velocity constraints during trajectory tracking.

In fact, the mechanical systems to be controlled are often subject to various types
of physical constraints such as the input saturation and state constraints [11,12]. It is
widely acknowledged that dealing with constraints is one of the basic challenges in most
physical control problems [13]. From a practical view point, rehabilitative training robots
are different from general mechanical systems operating at high speeds [14]. The tracking
motion velocity of rehabilitative robots must not exceed the safety velocity. Here, the
safety velocity refers to the actual velocity under the allowable maximum velocity of
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rehabilitative robots. Therefore, to guarantee the safety of rehabilitees, the controller for
rehabilitative training robots with safety velocity tracking performance is crucial.

In our previous study [15], a reliable control method was proposed based on redun-
dant degrees of freedom. The aim was to design an asymptotically stable controller that
can guarantee the safety of the user when one wheel actuator fault occurs. In this pa-
per, safety velocity control is considered in order to prevent motion velocity exceeding
user’s endurance capacity in practical applications. Therefore, determining how to main-
tain both stability and safety velocity performance is a worthwhile endeavor, which has
motivated us to conduct the present study. The main contributions of this paper are
summarized as follows.

(i) We propose a safety velocity trajectory tracking control algorithm for ODW and
establish closed loop stability of the tracking error system based on a Lyapunov function.

(ii) We obtain an upper bound on the degradation of tracking velocity that guarantees
trajectory tracking performance. The existence of controller parameter matrices is given
in terms of solutions of linear matrix inequalities. A significant feature of our proposed
approach is that a controller achieves velocity constraints performance via a simple design.

(iii) As an application, on the basis of the dynamic model, the safety velocity tracking
control on the ODW is considered. The efficiency of the proposed scheme is demonstrated.

The remainder of this paper is organized as follows. In Section 2, dynamic model of
the ODW is formulated. The main results that provide a solution to the safety velocity
tracking control problem are presented in Section 3. Simulation results are given in Section
4, and concluding remarks are provided in Section 5.

2. Dynamic Model of the Omnidirectional Walker. Figure 1 shows the structure of
the ODW with omniwheels, while the coordinate system and parameters used to develop
the ODW model are shown in Figure 2.

Figure 1. Structure of the ODW Figure 2. The ODW coordi-
nate system

In Figure 2,
Σ(x,O, y): Absolute coordinate system
Σ(x′, G, y′): Translation coordinate system
v: Speed of the ODW
vi: Speed of an omnidirectional wheel
fi: Force on each omnidirectional wheel
L: Distance from the center of gravity of the walker to each omnidirectional wheel
α: Angle between the x′ axis and the direction of v
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β: Angle between the x′ axis and r0

θi: Angle between the x′ axis and the position of each omnidirectional wheel
li: Distance from the center of gravity to the middle of each omnidirectional wheel
ϕi: Angle between the x′ axis and li
G: Center of gravity of the walker
r0: Distance between G and the center of gravity due to the load
Based on [16], the dynamic model is expressed as follows:

M0K(θ)Ẍ(t) + M0K̇
(
θ, θ̇

)
Ẋ(t) = B(θ)u(t) (1)

We let
x1(t) = X(t)

x2(t) = Ẋ(t)
(2)

such that Equation (1) can be expressed as follows:{
ẋ1(t) = x2(t)

ẋ2(t) = −[M0K(θ)]−1
[
M0K̇(θ, θ̇)

]
x2(t) + U(t)

(3)

where U(t) = [M0K(θ)]−1B(θ)u(t).
The actual motion trajectory is X(t), and the desired motion trajectory is Xd(t); there-

fore, trajectory tracking error e1(t) and velocity tracking error e2(t) are

e1(t) = X(t) − Xd(t) (4)

e2(t) = Ẋ(t) − Ẋd(t) = x2(t) − Ẋd(t) (5)

where eT
1 (t) =

[
eT
1x(t) eT

1y(t) eT
1θ(t)

]
, which are the x, y axes, and orientation angle

trajectory tracking errors, respectively; likewise, eT
2 (t) =

[
eT
2x(t) eT

2y(t) eT
2θ(t)

]
are the

x, y axes, and orientation angle velocity tracking errors, respectively.
Next, we design the control input as follows:

U(t) = [M0K(θ)]−1
[
M0K̇(θ, θ̇)

]
x2(t) + Ẍd(t) + uc(t) (6)

uc(t) = Kde2(t) + Kpe1(t) (7)

where Kd = diag {Kdx, Kdy, Kdθ} and Kp = diag {Kpx, Kpy, Kpθ}.
Thus, the error dynamics equation is obtained as:{

ė1(t) = e2(t)
ė2(t) = Kde2(t) + Kpe1(t)

(8)

It can easily be verified that the tracking error sub-system dynamics equation about
the x, y axes and orientation angle are given by the following:{

ė1x(t) = e2x(t)
ė2x(t) = Kdxe2x(t) + Kpxe1x(t)

(9){
ė1y(t) = e2y(t)
ė2y(t) = Kdye2y(t) + Kpye1y(t)

(10){
ė1θ(t) = e2θ(t)
ė2θ(t) = Kdθe2θ(t) + Kpθe1θ(t)

(11)

Furthermore, the cost function associated with Equation (8) is

J =

∫ ∞

0

(
eT
2 (t)Qe2(t)

)
dt (12)

Here, Q > 0 is a symmetric constant matrix.
In this paper, our focus is to design controller u(t) considering velocity constraint

performance such that the following two requirements are simultaneously satisfied:
(1) Trajectory error e1(t) and velocity error e2(t) are asymptotically stable.
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(2) Actual tracking motion velocity is x2(t) and xT
2 (t) =

[
xx

2(t) xy
2(t) xθ

2(t)
]
, noting

that
∣∣xT

2 (t)
∣∣ =

[
|xx

2(t)| |xy
2(t)|

∣∣xθ
2(t)

∣∣], with xx
2(t), xy

2(t) being the velocity of x, y axes,

and xθ
2(t) being the angle velocity; vmax is the allowable maximum motion velocity, and

vT
max = [vx max vy max vθ max], where vx max, vy max are the maximum velocities of the x,

y axes, and vθ max is the maximum angle velocity. The performance of x2(t) satisfies the
following inequalities:

|xx
2(t)| ≤ vx max, |xy

2(t)| ≤ vy max,
∣∣xθ

2(t)
∣∣ ≤ vθ max (13)

3. Controller Design with Velocity Constraints Performance. We aim to design
a safety velocity controller based on Lyapunov stability theory.

Theorem 3.1. Considering the error Equation (8), if there exist symmetric positive
matrices P = diag{P11, P22, P33} and Q = diag{Q11, Q22, Q33}, as well as matrices
S = diag{S11, S22, S33} and R = diag{R11, R22, R33}, such that the following LMIs hold:

S11 + Q11 R11 0 0
P11 0 0 0
0 0 0 0
0 0 vx max 0

 ≤ 0 (14)


S22 + Q22 R22 0 0

P22 0 0 0
0 0 0 0
0 0 vy max 0

 ≤ 0 (15)


S33 + Q33 R33 0 0

P33 0 0 0
0 0 0 0
0 0 vθ max 0

 ≤ 0 (16)

Then, control input Equations (6) and (7) solve the problem of asymptotic stability.
Proof: Define the Lyapunov function as

V (t) = V1(t) + V2(t) + V3(t) =
1

2
eT
1 (t)Pe1(t) +

1

2
eT
2 (t)Qe2(t) (17)

Here, we have the following:

V1(t) =
1

2
eT
1x(t)P11e1x(t) +

1

2
eT
2x(t)Q11e2x(t) (18)

V2(t) =
1

2
eT
1y(t)P22e1y(t) +

1

2
eT
2y(t)Q22e2y(t) (19)

V3(t) =
1

2
eT
1θ(t)P33e1θ(t) +

1

2
eT
2θ(t)Q33e2θ(t) (20)

The time derivative of V (t) along the trajectory of Equation (8) is given as follows:

V̇ (t) = eT
1 (t)P ė1(t) + eT

2 Qė2(t) (21)

Using xT (t) =
[
eT
2x(t) eT

1x(t) |ẋx
2(t)|

T 1
]

pre-multiply (14) and x(t) post-multiply (14),

we obtain the following:

eT
1x(t)P11e2x(t)+eT

2x(t)S11e2x(t)+eT
2x(t)R11e1x(t)+vx max |ẋx

2(t)|+eT
2x(t)Q11e2x(t) ≤ 0 (22)

Here, S11 = Q11Kdx and R11 = Q11Kpx. Therefore, we have the following:

V̇1(t) ≤ −vx max |ẋx
2(t)| − eT

2x(t)Q11e2x(t) (23)

Likewise, according to Equations (16) and (17), we have

V̇2(t) ≤ −vy max |ẋy
2(t)| − eT

2x(t)Q22e2x(t) (24)
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V̇3(t) ≤ −vθ max

∣∣ẋθ
2(t)

∣∣ − eT
2x(t)Q33e2x(t) (25)

From Equations (23), (24), and (25), we yield the following:

eT
1 (t)Pe2(t) + eT

2 (t)QKde2(t) + eT
2 (t)QKpe1(t) ≤ −vT

max |ẋ2(t)| − eT
2 (t)Qe2(t) (26)

And from Equation (26), we yield

V̇ (t) ≤ −vT
max |ẋ2(t)| − eT

2 (t)Qe2(t) (27)

According to Equation (27), we know that V̇ (t) ≤ 0, which further implies that V̇ (t) = 0
with ẋ2(t) = 0 and e2(t) = 0. Therefore, trajectory tracking error e1(t) and velocity
tracking error e2(t) are asymptotically stable on the basis of the LaSalle principle.

Theorem 3.2. Considering asymptotically stable the error Equation (8), if we have sym-
metric positive matrices P = diag{P11, P22, P33} and Q = diag{Q11, Q22, Q33} such that
the following LMIs hold: −1

2
Q11 0 0
0 −1

2
P11 0

0 0 V1(0) + vx max |xx
2(0)| − v2

x max

 ≤ 0 (28)

 −1
2
Q22 0 0
0 −1

2
P22 0

0 0 V2(0) + vy max |xy
2(0)| − v2

y max

 ≤ 0 (29)

 −1
2
Q33 0 0
0 −1

2
P33 0

0 0 V3(0) + vθ max

∣∣xθ
2(0)

∣∣ − v2
θ max

 ≤ 0 (30)

Then, the safety velocity constraints performance of Equation (13) can be guaranteed
using the suitable controller in the form of Equations (6) and (7).

Furthermore, the controller parameter matrices are Kd = Q−1S and Kp = Q−1R.
Moreover,

J∗ = V (t0) + vT
max |x2(0)| (31)

Proof: According to Equation (23), we have V̇1(t) ≤ −vx max |ẋx
2(t)|.

Integrating inequality V̇1(t) ≤ −vx max |ẋx
2(t)| from 0 to t on both sides, it follows that∫ t

0

V̇1(t)dt ≤
∫ t

0

(−vx max |ẋx
2(t)|)dt (32)

From this, we can obtain the following:

V1(t) − V1(0) ≤ −vx max(|xx
2(t)| − |xx

2(0)|) (33)

Inequality (33) can be further rewritten as follows:

vx max |xx
2(t)| ≤ V1(0) + vx max |xx

2(0)| − V1(t) (34)

Using yT (t) =
[
eT
2x(t) eT

1x(t) 1
]

pre-multiply (28) and y(t) post-multiply (28), we
have the following:

−1

2
eT
2x(t)Q11e2x(t) −

1

2
eT
1x(t)P11e1x(t) + V1(0) + vx max |xx

2(0)| − v2
x max ≤ 0 (35)

According to Equations (18) and (35), it follows that

−V1(t) + V1(0) + vx max |xx
2(0)| ≤ v2

x max (36)

Combining Equations (34) and (36), we yield

|xx
2(t)| ≤ vx max (37)

Likewise, according to Equations (29) and (30), we have |xy
2(t)| ≤ vy max and

∣∣xθ
2(t)

∣∣ ≤
vθ max.
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Furthermore, by Theorem 3.1, it follows that Kd = Q−1S and Kp = Q−1R. The cost
performance upper bound satisfies the following

J =
∫ ∞
0

(
eT
2 (t)Qe2(t)

)
dt =

∫ ∞
0

[
eT
2 (t)Qe2(t) + V̇ (t) − V̇ (t)

]
dt

≤ −vT
max(|x2(t)| − |x2(0)|) −

∫ ∞
0

V̇ (t)dt = V (t0) + vT
max |x2(0)|

Therefore, we have J∗ = V (t0) + vT
max |x2(0)| as a cost performance upper bound of

Equation (8).

Remark 3.1. A new velocity constraints control method is proposed, and the safety ve-
locity tracking performance (13) can be obtained from a Lyapunov function (17). This
approach (13) has the advantage of providing a simple way to restrict motion velocity for
ODW.

Remark 3.2. According to the inequalities (14)-(16) and (28)-(30), the method of ad-
justing parameters is designed using LMIs, and it is convenient to obtain the controller
matrices Kp and Kd.

4. Simulation Results. In this section, we verify our proposed safety velocity tracking
control algorithm via the ODW tracking simulation. Here, the Xd(t) is described as
follows:

xd(t) = 5 (1 − e−0.1t)

yd(t) = 5 (1 − e−0.1t)

θd(t) =
π

4
The physical parameters of the ODW used in the simulation are: M = 58kg; L = 0.4m;

I0 = 27.7kg · m2; the trainer load m = 60kg; center of gravity shift r0 = 0.1m; and β =
π
4
rad. Suppose we have maximum motion velocity vT

max =
[
0.25m/s 0.25m/s π

6
rad/s

]
,

initial motion velocity xT
2 (0) = [0m/s 0m/s 0rad/s], initial position x(0) = 1m, y(0) =

1m, and θ(0) = 0rad. By solving the inequalities of Equations (14) and (28), Equations
(15) and (29), and Equations (16) and (30), our simulation results are shown in Figures
3-8, described in further detail below.

Figures 3, 4, and 5 plot the trajectories of the x, y axes, and orientation angle, re-
spectively. The ODW can complete trajectory tracking in limited time. Therefore, the
tracking error state equation can realize asymptotic stability. The ODW can provide line
tracking for rehabilitee training, as shown in Figure 6. The tracking velocity along the x
and y axes and the orientation angle are shown in Figures 7 and 8, respectively. Here,
we can observe that our proposed control method can guarantee the ODW’s continuous
motion within the given safety velocity.

Figure 3. Tracking perfor-
mance of x position

Figure 4. Tracking perfor-
mance of y position
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Figure 5. Tracking perfor-
mance of angle Figure 6. Path tracking of line

Figure 7. Motion velocity Figure 8. Angular velocity

Figure 9. Path tracking of line Figure 10. Motion velocity

To verify the effectiveness of tracking control with safety velocity performance, we
conducted comparative simulations with the normal tracking control without velocity
constraints performance. Using the controller (6), (7) and Lyapunov function (17), the
parameter matrices Kp = diag{−20,−10,−10} and Kd = diag{−10,−2.5,−10} are ad-
justed manually to realize the trajectory tracking with the same initial values. The sim-
ulation results are presented in Figures 9 and 10.

Figure 9 plots the path tracking performance of the walker. It is evident that the walker
can realize asymptotic stability and path tracking. However, the motion velocity exceeds
the user’s endurance capacity in initial period time as shown in Figure 10. The user may
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be in danger because the actual motion velocity is far from the safety velocity. Therefore,
the controller with safety velocity performance is important.

5. Conclusions. In this paper, we proposed a new safety velocity tracking control ap-
proach for an ODW. Using the common Lyapunov function, the obtained safety velocity
controller can stabilize the ODW and realize velocity constraints performance. Simula-
tion results for our new synthesis design to resolve safety velocity tracking issues demon-
strated the effectiveness of our proposed method. Tracking results were consistent with a
pre-programmed training path designed by a medical professional.
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