
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 5, May 2016 pp. 1173–1180

THE MALWARE DETECTION OF ANDROID SYSTEM
BASED ON SVM

Lixia Xie and Binbin Zhao

School of Computer Science and Technology
Civil Aviation University of China

No. 2898, Jinbei Road, Dongli District, Tianjin 300300, P. R. China
lxxie@126.com

Received October 2015; accepted January 2016

Abstract. A new malware detection model is proposed in this paper to solve the An-
droid platform malware detection problem. The model consists of clients and a server;
the clients get sample’s information of permission, broadcast, service, and traffic. The
server removes redundant feature information according to their correlation and quan-
tifies the remaining feature information as the n-dimensional feature vectors, and then
the server uses the geometric interval to figure out the optimal hyperplane. In the last,
the server uses the trained detector to classify the software. The detection experiments
on Android environment were performed and the experimental results showed that our
detection model had a higher accuracy.
Keywords: Malware, Feature vectors, Support vector machine (SVM), Geometric in-
terval, Hyperplane

1. Introduction. Android is a mobile operating system based on Linux which has been
gradually beyond Symbian, IOS to become the mainstream operating system of the in-
telligent mobile devices since Google released it in November 2007. Its explosive growth
and open features also bring a lot of security threats.

Safety reports in 2014 published by Cheetah Mobile which is an international authori-
tative mobile information security organization showed that: the increase rate of malware
in Android in 2014 was 2.5 times that of 2013 and the number of infected files in 2014
was more than 20 times that of 2012 [1]. The security threats of Android system in 2014
include: mobile payment, malicious deduction, privacy disclosure, remote control, hacking
tools [1], etc.

At present, the main way of malware detection includes [2] static detection, dynamic de-
tection and hybrid detection. The static detection disassembles applications and matches
the application’s signature which has high execution rate and accuracy rate, but it can-
not identify the new and variant malware; The dynamic detection detects malware by
identifying the hidden behavior which needs more samples and has a lower accuracy; The
hybrid detection is a combination of static detection and dynamic detection which is hard
to realize, but has a higher accuracy.

The mainstream malware detection model at home and abroad includes Crowdroid [3],
DroidRanger [4], etc. Crowdroid [3] uses the method of machine learning to monitor
the system’s behavior which can detect new and variant malware, but it needs more
samples and does not use the information of Android virtual machine; DroidRanger [4]
uses the hybrid way to analyze and identify the malicious behavior, but the extraction of
permission information is achieved in PC which makes it complex to realize and apply.
So, it needs to be improved in detection rate and applicability.

In this paper a new mobile malware detection model combined with the current main-
stream malware detection way was proposed which has high detection rate and strong

1173

1174 L. XIE AND B. ZHAO

applicability. The model collects the feature information of samples in clients, deals with
feature information and extracts feature vectors, takes the geometric intervals as criterion
and uses the algorithm of SVM to train the detector in server. Lastly, the model uses the
detector to detect the software.

The remainder of the paper is structured as follows. The detection model is described
in Section 2. Section 3 briefly describes the implementation of the detection model. Our
experimental results and analysis are reported in Section 4, and we conclude the paper in
Section 5.

2. Design of the Detection Model. In order to overcome the problem of low detection
rate and poor applicability in current detection models, a new malware detection model
is put forward in this paper. The core modules of the model are feature information
extraction module, detection and recognition module.

Feature information extraction module is mainly responsible for collecting feature in-
formation and providing data for training detector and detecting malware; detection and
recognition module is mainly responsible for dealing with feature information, training
detector and using the trained detector to identify malware and benign software. The
overall architecture of the detection model proposed in this paper is shown in Figure 1.

Figure 1. The overall architecture of the detection model

2.1. Feature information extraction module. The safety of Android system largely
depends on the permission mechanism. The corresponding permission is needed when the
application performs any actions in Android system. Only when the application applies
for the corresponding permission, can the application perform the action. Only when the
Android system accepts all permissions of the software, can the software be installed
and run. Therefore, permission information is the detection model’s preferred feature
information; the spread of malware or privacy information needs to consume large amounts
of network traffic, so the application’s network traffic is also important feature information
which is needed in detecting. When installed, the malware usually starts by monitoring the
system’s boot broadcast and performs unauthorized malicious behavior in the background
periodically or by monitoring the system’s broadcast. The Android’s security mechanism
requires the application to apply for the corresponding broadcast and service information
to perform the operation, so the broadcast and service information are other important
feature information which is needed in detecting.

At present, the extraction of mainstream detection model’s feature information usually
uses the following way: firstly, using tools to disassemble or directly decompressing the
APK (AndroidPackage) to get the file of AndroidManifest.xml [5]; then, parsing it to get
the relevant feature information. This kind of method has a lot of work to do and its
efficiency is low. The detection model proposed in this paper uses the following way to
extract feature information: using the clients to collect the feature information which is
running on the mobile devices, and then the clients upload the feature information to the
server by network.

ICIC EXPRESS LETTERS, VOL.10, NO.5, 2016 1175

2.2. Detection and recognition module. The process of the detection and recognition
module mainly includes dealing with feature information [6], generating feature vectors,
training detector and identifying malware. Firstly, the module figures out the correlation
degree and removes redundant feature information; secondly, the module quantifies the
feature information to n-dimensional feature vectors and uses them to train the detector;
lastly, the detector is used to identify malware.

2.2.1. Dealing with the feature information. Due to the redundancy and irrelevance of
the feature information, redundant and invalid feature information needs to be removed
to reduce the complexity of the detector and the error rate, such as: android.permisson.
WRITE EXTERNAL STORAGE, android.permisson.MOUNT UNMOUNT FILESYST
EMS [8]. These two kinds of feature information appear in pairs, and it will be ok to just
keep one.

In this paper, the model calculates the feature information’s information entropy [7] and
correlation to remove redundant and invalid feature information. The information entropy
[7] of feature information A (H(A)) (N is the type of feature information A can be, P
is the emergence probability of the feature information) and the conditional information
entropy [7] of feature information A after known feature information B (H(A|B)) (M is
the type of feature information B can be) is:

H(A) = −
N∑

i=1

P (Ai) log2 P (Ai) (1)

H(A|B) = −
N∑

i=1

M∑
j=1

P (AiBj) log2 P (Ai|Bj) (2)

The mutual information between feature information A and feature information B
(I(A,B)) is:

I(A, B) = H(A) − H(A|B) (3)

The relevance (Sim(A,B)) between feature information A and feature information B
can measure the correlation between them. The formula is:

Sim(A,B) = 2
I(A,B)

H(A) + H(B)
(4)

If the correlation between a set of feature information is 1, it will be ok to just keep
one; otherwise, they all need to be kept.

2.2.2. Generating feature vectors. The processes of obtaining the handled feature infor-
mation and quantifying them to n-dimensional feature vectors are: counting and recording
the type and total amount of feature information; for the feature information of permis-
sion, if the sample has this permission, then the feature value is 1, otherwise, the feature
value is 0; for the feature information of broadcast and service, if the sample has this
service or broadcast, then the feature value is 1, otherwise, the feature value is 0; for
the feature information of network traffic, if the sample consumes network traffic (not
applying for the permission of Internet can also have access to the network), then the
feature value is 1, otherwise, the feature value is 0; counting the feature value of every
feature information and composing them to n-dimensional feature vectors orderly.

The generated feature vector sample is as shown below:
Benign software: 0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.

Malware: 0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,
0,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,1,0.

1176 L. XIE AND B. ZHAO

2.2.3. Training the detector. The training of the detector is completed through the SVM
algorithm, and the decision function of SVM is:

g(x) = wx + b (5)

Among them, w is n-dimensional normal vector, b is the offset, x is n-dimensional
feature vectors, namely:

x = (x1, x2, . . . , xn) (6)

If the sample is benign software, then the value of g(x) is 1; if the sample is malware,
then the value of g(x) is −1.

The ultimate goal of training detector is to figure out a set of w and b to make sure
the hyperplane (wx + b = 0) can separate the sample points which represent the benign
software and malware in the n-dimensional space (as shown in Figure 2).

Figure 2. Hyperplane classifying software

In order to ensure the sample points of benign software and malware can be classified,
fix geometry interval to 1 and get the objective function of w (Formula (7)), and constraint
conditions of w and b (Formula (8)); among them, (i = 1, 2, . . . , l) (l is the number of
samples), w is not only related to the location of samples but also related to the type of
samples (Formula (9)).

The sample points of benign software and malware are linear inseparable. We use the
radial basis kernel function [8-10] (Formula (10)) to map sample space to high dimension
space; we put the slack variable εi (i = 1, 2, . . . , l) and penalty factor C into objective
function and constraint condition; finally, we get the objective function and constraint
condition of w and b (Formulas (11), (12)).

Min

(
1

2
||w||2

)
(7)

g(xi) [(wxi + b)] − 1 ≥ 0 (8)

w = ∂1g(x1)x1 + ∂2g(x2)x2 + · · · + ∂lg(xl)xl (9)

K(xi, x) = e−γ||xi−x||2 , γ > 0 (10)

Min

{
1

2
||w||2 + C

l∑
i=1

εi

}
(11)

g(xi) [(wxi + b)] ≥ 1 − εi (12)

2.2.4. Identifying malware. The detection and identification of malware is to put the
feature vectors into decision function (Formula (7)) and get the results.

The detection and identification process of malware is: dealing with feature information
and quantifying them to n-dimensional feature vectors; putting the feature vectors into

ICIC EXPRESS LETTERS, VOL.10, NO.5, 2016 1177

decision function and getting the value of g(x). If the value of g(x) is greater than or
equal to 1, then the sample is benign software; if the value of g(x) is less than or equal to
−1, then the sample is malware; otherwise, adjusting the feature vector and calculating
again.

3. Realization of the Detection Model. The feature information collecting module
contains the mainstream virus database (source: Kingsoft Antivirus). It firstly gets the
signature of the test software and makes a static detection. If the signature is a mali-
cious signature, then the user will be notified; otherwise, the module will get the feature
information and upload them to the server.

In this paper the collecting of feature information is in the following way.
(1) The client uses the class of PackageManager to collect the feature information.
(2) The client uses the class of TrafficStats to collect the network traffic each application

consumed from the system startup to now.
(3) The client uploads feature information to the server in the format of JSON and

loads the detection results periodically.
The detection and identification module consisted of detector runs in the server which

is the core module of the detection model. Its main function is using the trained detector
to calculate the results and feedbacking the results to clients.

3.1. Training the detector. The ultimate goal of training detector is to get the value
of the n-dimensional normal vector w and the offset b. The training process is:

(1) The server responds the HTTP request which comes from the client to get the
feature information in the format of JSON and uses the third party kits (json-lib.jar)
to parse the feature information. Then the server saves the feature information into the
tables of MySQL (trainWare: saving the name of the samples and whether the sample is
malware; template: saving the feature information of samples).

(2) We use methods and formulas Section 2 described to figure out the correlation degree
of feature information and remove the redundant feature information in table template
according to the results.

(3) We use the quantitative rules Section 2 described to generate the feature vectors,
and then we put the feature vectors into the objective function and constraint condition,
(Formulas (11), (12)) to get the value of w and b. At this point, the training of the
detector is over.

3.2. Identifying the malware. The identification of malware is putting feature vectors
of the test sample into detector to calculate the results. The process is:

(1) The server responds the HTTP request which comes from the client to get the
feature information in the format of JSON and uses the third party kits (json-lib.jar) to
parse the feature information. Then the server saves the feature information into table
testWare (testWare: saving the name of the test samples) and table feature (feature:
saving the feature information of the test samples).

(2) We match table feature with table template and remove the type of the feature
information from table feature if table template does not contain the type of the feature
information. Lastly, we quantify the feature information of table feature and compose
them to n-dimensional feature vectors orderly.

(3) We put the feature vectors of the test sample into the decision function; if the
output of the decision function is greater than or equal to 1, then the test sample is
benign software; if the output of the decision function is less than or equal to −1, then
the test sample is malware.

(4) Lastly, the server feedbacks the results to the clients in the format of JSON.

1178 L. XIE AND B. ZHAO

4. Test and Analysis. We used J2SE technology to design and implement the core
program of client and server and used the Android mobile devices and PC as the test
platform for the clients and server.

1800 samples were used to train and test the detection model which came from the
related websites, BBS, etc. We selected 800 samples as the training samples; among them
400 training samples were benign samples, and 400 training samples were malware. We
selected 1000 samples as the test samples; among them, 600 test samples were benign
samples, and 400 test samples were malware.

The feature information collecting interface of training samples is shown in Figure 3,
the part feature information statistics of training samples is shown in Figure 4, and the
result of detecting interface is shown in Figure 5.

The detection results of 1000 test samples are shown in Table 1.
The detection results of Table 1 show that: The detection model proposed in this paper

has higher detection rate and lower error rate; document [5] proposes a detection method
of using only the permission information as feature information and different algorithms
as the classification algorithms. We compared the algorithm of SVM with J48, Random
forest and CART proposed in document [5]. The comparison results are shown in Table
2.

The comparison results of Table 1 and Table 2 show that: the detection model proposed
in this paper can identify the malware and benign software effectively.

Figure 3. Feature information

ICIC EXPRESS LETTERS, VOL.10, NO.5, 2016 1179

Figure 4. Part feature information of training samples

Figure 5. Detection results

5. Conclusions. This paper proposes a malware detection model for the malware de-
tection problem. In the model, the clients are used to detect the software preliminarily,
extract the feature information and upload the feature information to the server; the
server handles the feature information and generates the feature vectors, takes the geo-
metric interval as the rules and uses the SVM to train detector; lastly, the detector is
used to detect software.

Although this model can effectively detect malware, it is still insufficient. For example,
the collecting period of some feature information is longer, the number of training sample
is large, and it is difficult to train the detector.

1180 L. XIE AND B. ZHAO

Table 1. Detection results

Sample Number CIN EIN CR ER
benign 600 551 49 91.8% 8.2%

malicious 400 369 31 92.25% 7.75%
total 1000 920 80 92.0% 8.0%

CIN: Correct Identified Number;
EIN: Error Identified Number;
CR: Correct Rate; ER: Error Rate.

Table 2. Comparison of detection results

Result J48 Random forest CART
CR 90.72% 91.75% 90.72%
ER 9.28% 8.25% 9.27%

CR: Correct Rate; ER: Error Rate.

We will make some improvement in increasing the number of samples, increasing the
types of feature information (such as: the information of CPU, memory and process),
optimizing the training algorithm and so on.

Acknowledgement. This work is partially supported by the National Natural Science
Foundation of China (NSFC). We would like to thank NSFC and people for their supports.

REFERENCES

[1] 2014 Half Year Security Report, http://www.cmcm.com/blog/2014-07-18/186.html.
[2] S. Michael, S. Thomas, E. Florian, A. Daniel et al., Mobile-Sandbox: Combining static and dynamic

analysis with machine-learning techniques, International Journal of Information Security, vol.14,
no.2, pp.141-153, 2015.

[3] B. Iker, Z. Urko and N. Simin, Crowdroid: Behavior-based malware detection system for Android,
Proc. of the First ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
New York, America, pp.15-26, 2011.

[4] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, Hey, you, get off of my market: Detecting malicious Apps
in official and alternative Android markets, Proc. of the 19th Annual Symposium on Network and
Distributed System Security, Geneva, Switzerland, 2012.

[5] A. Zarni and Z. Win, Permission-based Android malware detection, International Journal of Scien-
tific & Technology Research, vol.2, no.13, pp.2277-8616, 2013.

[6] The List of Permissions for Android Applications, http://www.cnblogs.com/hibraincol/archive/
2010/09/14/1826337.html.

[7] H. Yang, X. Chen, H. Sun and S. Wu, Spatiotemporal structural evolution and regional differentiation
analysis of land use in Xinjiang based on information entropy, Proc. of the 2nd Conference on
Environment Science and Information Application Technology, Wuhan, China, pp.633-638, 2010.

[8] K. Pankaj, K. Asha and N. Baluram, Offline handwriting recognition using invariant moments and
curve let transform with combined SVM-HMM classifier, Proc. of the International Conference on
Communication System and Network Technologies, Gwalior, India, pp.144-148, 2013.

[9] K. Ashish and K. Sarika, Analysis of timing constraint on combined SVM-HMM classifier and
SVM classifier, Proc. of IEEE International Conference of Innovation and Technology in Education,
Jaipur, India, pp.214-218, 2013.

[10] R. Bernardete, M. Senior, L. Noel et al., Signature identification via efficient feature selection and
GPU-based SVM classifier, Proc. of International Joint Conference on Neural Networks, Beijing,
China, pp.1138-1145, 2014.

