
ICIC Express Letters ICIC International c©2016 ISSN 1881-803X
Volume 10, Number 6, June 2016 pp. 1239–1245

GPU-BASED SIMULATION OF OCEAN WATER USING FLUID

DYNAMICS MODEL AND DISPLACEMENT MAPPING

Jie Xu1, Jinhua Fu2,3 and Hongtao Zhang4,∗

1School of Software
3School of Computer and Communication Engineering

Zhengzhou University of Light Industry
No. 5, Dongfeng Road, Zhengzhou 450002, P. R. China

2State Key Laboratory of Mathematical Engineering and Advanced Computing
Zhengzhou 450002, P. R. China

4College of Information Engineering
Zhengzhou University

No. 100, Kexue Ave., Zhengzhou 450000, P. R. China
∗Corresponding author: htzhangzz@qq.com

Received November 2015; accepted February 2016

Abstract. Real-time realistic simulation of liquids like ocean water is an important task
nowadays in the field of computer graphics. In this paper, we present a novel method
to achieve plausible visual results of ocean water at higher rendering rates. Based on
evolution of the density and the velocity, we establish the fluid dynamics model to ex-
press properties of the fluid and simulate ocean water efficiently. Also we implement the
displacement mapping by utilizing the heightmap and design the shading shader on the
GPU (Graphics Processing Unit), which gives a realistic appearance in higher render-
ing speed. The results show that we can acquire realistic rendering effects such as water
color, light reflection, caustics and soft shadow, while achieving a relatively faster speed
of rendering.
Keywords: Real-time realistic simulation, Ocean water, Fluid dynamics model, Dis-
placement mapping

1. Introduction. The occurrences of fluids are very common in everyday life, and are
witnessed in many different forms outside of the realm of just liquids such as smoke, fire,
hurricanes, water, and other related phenomena. Ocean water simulation has become a
hot topic in computer graphics in recent years, due to its popularity and frequent use in
special effects for feature films, virtual reality and 3D games.

So far, many methods for water simulation have been proposed in the past. Fluid
simulation in computer graphics begins with lower dimensional techniques such as the
particle system [1, 2]. These lower quality techniques are used to create 2D shallow water
models, and semi-random turbulent noise fields. Then Clavet et al. [3] attempt to improve
the particle-based simulation by using viscosity. This simulation takes into account surface
tension and tries to implement non-linear plastic behavior, which is achieved through the
use of two techniques: the Eulerian grids and Lagrangian particles. However, they only
achieve realistic small-scale behavior of substances such as paint or water as they splash
on moving objects. For large-scale dynamic river motion phenomenon, Shi et al. [4]
describe a combination of modeling methods for flood routing process simulation: FFT-
based (Fast Fourier Transform) large-scale water surface modeling and dynamic flood peak
generation on water surface. Especially considering optical properties of water, Algan et
al. [5] design and implement a model for rendering and animating water drops moving on
a surface under physical effects such as gravity, surface affinity and wind. Even though
the physics of water droplets is rendered, it cannot be implemented in highly interactive

1239

1240 J. XU, J. FU AND H. ZHANG

environments such as 3D games. Shi et al. [6] estimate the optical properties of polluted
water regardless of the kinds and the concentrations of pollutants in water, which can
generate polluted water effects unachievable by standard rendering methods. Recently,
using the GPU-based method, Liu and Xiong [7] propose a novel rapid simulation of
water interacting with objects; however, they have to improve the rendering speed in the
future work. To integrate with the multi-core technique and improve the collaboration
of CPU-GPU, Oh [8] introduces a novel single-phase particle simulation for trapped air
bubbles in a turbulent water flow. His method can be easily implemented by extending
an existing rigid body interaction of fluid solver. In order to simulate the transition
between different types of flows. Lim et al. [9] model these transitions by constructing
a very smooth fluid surface and a much rougher, splashy surface separately, and then
blending them together in proportions that depend on the flow speed. Nowadays, with
the increasing requirement of modern 3D technology, the main challenge of rendering
is not only to approximate the realistic effect of ocean water to give naturally looking
appearance, but also develop sufficiently fast method to allow for feasible computation
based on GPU rendering pipelines.

Motivated by meeting the requirement, our research focuses on faster GPU-based ren-
dering of ocean water while keeping visually plausible appearance via fluid dynamics
model. We have to keep in mind that the look of the water depends mostly on how it
interacts with the environment lighting. So for this reason, we have also implemented
the water rendering via the displacement mapping, which is fit for 3D games. Displace-
ment mapping is an effective technique that is becoming more common in the video game
industry, especially with current generation PC’s and the next generation of console de-
velopment [10].

The rest of this paper is organized as follows. The fluid dynamics model for ocean water
is established in Section 2. Realistic rendering via displacement mapping on the GPU is
given in Section 3. The results are discussed in Section 4, and conclusions are drawn in
Section 5.

2. Fluid Dynamics Model for Ocean Water.

2.1. Fluid simulation. The fluid simulator is based on the Navier-Stokes equations,
given as follows:

∂u

∂t
= −(u · ∇)u + ν∇2u + f (1)

∂ρ

∂t
= −(u · ∇)ρ + κ∇2ρ + S (2)

where u is the velocity, ρ is the density, ν is the viscosity, κ is the diffusion coefficient, f

is the external force, and S is the mass source.
In this paper, we consider ν and κ as constants, which describe the properties of the

fluid. Fluid where ν can be considered as a constant is called as Newtonian fluid. Here,
u and ρ fully describe the state of the fluid. The terms f and S can be used as inputs to
control the fluid. The simulation basically consists of two steps: evolution of the density,
and evolution of the velocity. We consider a (N + 2) × (N + 2) × (N + 2)-divided mesh,
and calculate the time evolution of the density and velocity within the three dimensional
field.

2.2. Evolution of density. The time evolution of fluid density is described by Equation
(2). We will first observe the second term, which is the diffusion term. Naively discretizing
Equation (2) with the forward difference operator yields the difference equation

ρt+1(i, j, k) = ρt(i, j, k) +
∆t

∆x2
κ(ρt(i + 1, j, k) + ρt(i − 1, j, k) + ρt(i, j + 1, k)

+ρt(i, j − 1, k) + ρt(i, j, k + 1) + ρt(i, j, k − 1) − 6ρt(i, j, k)) (3)

ICIC EXPRESS LETTERS, VOL.10, NO.6, 2016 1241

where ∆t and ∆x are the time steps and mesh widths, respectively. Equation (3) provides
an iteration for evolving ρ over time, where the density of the next step is an explicit
function of the previous steps.

However, this method is an unstable algorithm, i.e., ρ can diverge depending on the
simulation settings, such as values of N and κ. We avoid this by using a backward
difference operator for the discretization, yielding the difference equation

ρt(i, j, k) = ρt+1(i, j, k) −
∆t

∆x2
κ
(

ρt+1(i + 1, j, k) + ρt+1(i − 1, j, k) + ρt+1(i, j + 1, k)

+ρt+1(i, j − 1, k) + ρt+1(i, j, k + 1) + ρt+1(i, j, k − 1) − 6ρt+1(i, j, k)
)

(4)

This equation can be interpreted as a system of linear equations

ρt(i, j, k) =
∆t

∆x2

(

∆x2

∆t
+ 6 1 1 1 1 1 1

)

ρt+1(i, j, k)
ρt+1(i + 1, j, k)
ρt+1(i − 1, j, k)
ρt+1(i, j + 1, k)
ρt+1(i, j − 1, k)
ρt+1(i, j, k + 1)
ρt+1(i, j, k − 1)

(5)

By collecting this equation for all i, j and k, we obtain the linear equation in the simple
form

Aρt+1 = ρt (6)

where ρt+1 and ρt are vectors constructed by straightening out the i, j, k components of
ρt+1(i, j, k) and ρt(i, j, k), respectively, into column vectors. Since A and ρt are known,
calculating the time evolution of diffusion reduces to solving this linear system of equations
for ρt+1.

The sparse structure of A can be used for efficient calculation of the solution. In this
paper, an iterative method known as the Gauss-Seidel method is used. The third term of
Equation (2), S, can be implemented trivially by simply incrementing ρ by S∆t in each
time step.

2.3. Evolution of velocity. Due to the similarity of Equation (1) and Equation (2),
evolution of velocity can be done using the exact same formulations as the evolution of
density. The difference in the velocity step is that some transformations are applied to
satisfy mass conservation, for more realistic results. This appears as a preprocessing step
for u in the algorithm.

This step can be explained as follows. We have the assumption that the flow of the
fluid is incompressible, i.e.,

∇ · u = 0 (7)

It is known that combined with the Navier-Stokes equations, Equation (1) and Equation
(2), this is equivalent to the equation

∂ρ

∂t
+ u · ∇ρ = 0 (8)

which is also known as the continuity equation, an equation that describes mass conser-
vation in a differential form. Therefore, we have that incompressibility is equivalent to
mass conservation.

However, the computed values of the velocity field do not necessarily satisfy Equation
(7), due to computational errors and discretization errors. The violation of mass conser-
vation hinders the quality of the simulation to a visually recognizable level. Therefore,
we must somehow force the simulation results to satisfy mass conservation.

1242 J. XU, J. FU AND H. ZHANG

In this paper, this is accomplished by decomposing the computed velocity field to
a mass-conserving part and non-mass-conserving part, and subtracting the non-mass-
conserving part away from the computed velocity field, which is a process called Hodge
decomposition [11].

Let u′ be the computed velocity field, where ∇ · u′ := g 6= 0, it is known that every
three dimensional vector field can be decomposed using a vector potential and a scalar
potential. Therefore, there always exists some vector potential χ and scalar potential φ,
such that u can be decomposed as

u′ = ∇× χ + ∇φ (9)

By taking the divergence of Equation (9), we have

∇ · u′ = ∇ · ∇× χ + ∇2φ (10)

therefore

g = ∇2φ (11)

Equation (11) is known as the Poisson equation. Suppose that we have found solved
Equation (11) and found φ. We can then construct a new velocity field

u′′ := u′ −∇φ (12)

which must satisfy

∇ · u′′ := ∇ · (u′ −∇φ) = ∇ · (∇× χ) = 0 (13)

Therefore, the new velocity field u′′ satisfies Equation (7), ultimately meaning that it
satisfies mass conservation. Therefore, we can use this transformation from u′ to u′′ to
force the computed velocity field to satisfy the mass conservation law.

In this paper, this transformation, i.e., solving Equation (11) and using Equation (13)
is done before computing the diffusion and advection terms for the velocity field. The
Poisson equation, Equation (11), is solved by discretization, which yields a linear system
of equations. The Gauss-Seidel method is used for solving the obtained linear system of
equations, where the sparse structure is used in this case as well.

3. Realistic Rendering via Displacement Mapping on the GPU. Reflections,
refractions and appearance details contribute the most to the perceived realism of the
simulation of water surfaces. In order to express these realistic effects, we design and
implement the displacement mapping which is shown in Figure 1. We take that one step
further by utilizing an additional map called a heightmap, which describes the bumps
and crevices of a surface. A heightmap is essentially just a gray scale image where each
pixel is interpreted as a height value. This is used when we tessellate a mesh, where
the heightmap is sampled in the domain shader to offset vertices in the normal vector
direction, which in turn, adds geometric detail.

Figure 1. Displacement mapping effects

The following formula is used to displace a vertex position P ′, where the outward surface
normal vector N is used as the direction of displacement:

P ′ = P + (h − 1) × N (14)

ICIC EXPRESS LETTERS, VOL.10, NO.6, 2016 1243

where this equation “pops” the geometry inward by using the h value that was obtained
from the heightmap.

When rendering on the GPU, each triangle has to be tessellated differently depending
on how close or far it is to the eye. The closer it is, the more tessellation it receives, and
vice versa. The vertex shader helps compute a distance to determine this amount, which is
then passed onto the hull shader. Add the following shader code to DisplacementMap.fx

which creates a linear function of distance that determines how much to tessellate based
on distance of triangle.

1 // Transform to world space .
2 vout .PosW=mul(f l o a t 4 (vin . PosL , 1 .0 f) , gWorld) . xyz ;
3 vout .NormalW=mul(vin . NormalL , (f l o a t 3x3) gWorldInvTranspose) ;
4 vout . TangentW=mul(vin . TangentL , (f l o a t 3x3) gWorld) ;
5 // Output v e r t e x a t t r i b u t e s f o r i n t e r p o l a t i o n across t r i a n g l e .
6 vout . Tex=mul (f l o a t 4 (vin . Tex , 0 .0 f , 1 . 0 f) , gTexTransform) . xy ;
7 f loat d=d i s t an c e (vout .PosW, gEyePosW) ;
8 // Normalized t e s s e l l a t i o n f a c t o r .
9 f loat t e s s=satu rate ((gMinTessDist−d)/(gMinTessDist−gMaxTessDist)) ;

10 // Rescale [0 , 1] to [gMinTessFactor , gMaxTessFactor] .
11 vout . TessFactor=gMinTessFactor+t e s s ∗(gMaxTessFactor−gMinTessFactor) ;

The domain shader takes inputs of the hull shader outputs, patch data, and tessel-
lation factors, and it outputs the position of a vertex. It samples the heightmap and
offsets the vertices in the normal direction, and is called for every vertex created by
the tessellator. Add the following shader code to support the domain shader within the
DisplacementMap.fx file:

1 // I n t e r p o l a t e patch a t t r i b u t e s to generated v e r t i c e s .
2 dout .PosW=x∗ t r i [0] . PosW+y∗ t r i [1] . PosW+z∗ t r i [2] . PosW;
3 dout .NormalW=x∗ t r i [0] . NormalW+y∗ t r i [1] . NormalW+z∗ t r i [2] . NormalW ;
4 dout . TangentW=x∗ t r i [0] . TangentW+y∗ t r i [1] . TangentW+z∗ t r i [2] . TangentW ;
5 dout . Tex=x∗ t r i [0] . Tex+y∗ t r i [1] . Tex+z∗ t r i [2] . Tex ;
6 // I n t e r p o l a t i n g normal can unnormalize i t , so normal ize i t .
7 dout .NormalW=normal i ze (dout .NormalW) ;
8 // Begin disp lacement mapping .
9 const f loat MipI=20.0 f ;

10 f loat mipLevel=clamp ((d i s tance (dout .PosW, gEyePosW)−MipI)/MipI , 0 . 0 f , 0 . 6 f) ;
11 // Sample he i g h t map (s t ored in a lpha channel) .
12 f loat h=gNormalMap . SampleLevel (samLinear , dout . Tex , mipLevel) . a ;
13 // O f f s e t v e r t e x a long normal .
14 dout .PosW+=(gHeightSca le ∗(h−1.0))∗ dout .NormalW ;
15 // Pro jec t to homogeneous c l i p space .
16 dout . PosH=mul (f l o a t 4 (dout .PosW, 1 .0 f) , gViewProj) ;

4. Rendering Results. We have implemented the fast simulation of ocean water us-
ing fluid dynamics model and displacement mapping on the GPU. All experiments are
run on a PC with AMD Athlon II X4 Four Cores, and NVIDIA GeForce GT430. The
software platform is based on MS Visual Studio 2012 and OpenGL as the programming
language. We also employ GLSL (OpenGL Shading Language) as vertex and fragment
shader language on the GPU. We have given rendering effects of ocean water and compare
the rendering speed of our method with the previous method. Our final rendering clearly
shows the effective implementation of the above mentioned technique.

We firstly implement realistic rendering of ocean water in different views, and show dif-
ferent scenes to express different rendering effects. The images from our water simulation
via our method are shown in following Figure 2.

From Figure 2, we can observe that the rendering appearance of ocean water using our
method is realistic in such as water color, light reflection, caustics and soft shadow, which

1244 J. XU, J. FU AND H. ZHANG

(a) (b)

(c) (d)

Figure 2. Rendering results of ocean water in different views

Figure 3. Foam effect
via reference method [7]

Figure 4. Foam effect
via our method

is accord with physical phenomena. Part of it is reflected back in the upward direction
and part of it is refracted inside the water volume. The reflected ray can further hit other
objects causing reflective caustics. So we can simulate the physical phenomena when a
ray hits the water surface.

Under different rendering methods, we show different scenes to express more realistic
effects such as details in foam using our method as shown in Figure 3 and Figure 4. The
foam effect in detail via our method is more obvious and clear, which shows our technique
is very effective.

In the performance of rendering speed, using displacement mapping on the GPU we
have obtained about 66 frames per second (FPS) when rendering 800 points; however,
the real-time rendering method such as Liu and Xiong’s method [7] only acquires 45 FPS.
The difference of rendering time between our method and the method [7] is more obvious
when increasing rendering points greatly. The difference of rendering speed is between

ICIC EXPRESS LETTERS, VOL.10, NO.6, 2016 1245

Figure 5. Rendering speed comparison between our method and the lit-
erature method [7]

two methods as shown in Figure 5. From Figure 5, our method is about 1.47-3 times
faster than Liu and Xiong’s method [7].

5. Conclusions. We have implemented the fast simulation of ocean water using fluid
dynamics model and displacement mapping on the GPU. The rendering results show that
our rendering method can obtain realistic effects of ocean water in such as water color,
light reflection, caustics and soft shadow, which is accord with physical phenomena. In
the performance of rendering speed, we are able to achieve faster GPU-based rendering
while keeping visually plausible appearance of water. The difference of rendering speed
is more obvious when increasing rendering points greatly. So our method has a great
practical value in the industry of 3D games.

There are still some ways to improve the rendering program. One useful skill would
be to implement particle-solid collision detection. This would open a lot of potential to
create realistic scenes such as a waterfall or a fountain.

REFERENCES

[1] S. Premžoe, T. Tasdizen, J. Bigler, A. Lefohn and R. T. Whitaker, Particle-based simulation of
fluids, Computer Graphics Forum, no.10, pp.401-410, 2003.

[2] M. Müller, D. Charypar and M. Gross, Particle-based fluid simulation for interactive applications,
Proc. of the ACM Siggraph/Eurographics Symposium on Computer Animation, pp.154-159, 2003.

[3] S. Clavet, P. Beaudoin and P. Poulin, Particle-based viscoelastic fluid simulation, Proc. of the ACM
Siggraph/Eurographics Symposium on Computer Animation, pp.219-228, 2005.

[4] S. Shi, X. Ye, Z. Dong and Y. Zhang, Real-time simulation of large-scale dynamic river water,
Simulation Modeling Practice & Theory, vol.15, no.6, pp.635-646, 2007.

[5] E. Algan, M. Kabak, B. Ozguc and T. Capin, Simulation of water drops on a surface, 3DTV Con-
ference: The True Vision-Capture, Transmission and Display of 3D Video, pp.361-364, 2008.

[6] J. Shi, D. Zhu, Y. Zhang and Z. Wang, Realistically rendering polluted water, Visual Computer,
vol.28, nos.6-8, pp.647-656, 2012.

[7] S. Liu and Y. Xiong, Fast and stable simulation of virtual water scenes with interactions, Virtual
Reality, vol.17, no.1, pp.77-88, 2013.

[8] S. Oh, Single-phase trapped air simulation in water flow, Proc. of WSCG, 2014.
[9] J. G. Lim, B. J. Kim and J. M. Hong, Water simulation using a responsive surface tracking for

flow-type changes, Visual Computer, pp.1-11, 2015.
[10] L. Szirmay-Kalos and T. Umenhoffer, Displacement mapping on the GPU-state of the art, Computer

Graphics Forum, vol.27, no.6, pp.1567-1592, 2008.
[11] G. Schwarz, Hodge decomposition – A method for solving boundary value problems, Lecture Notes

in Mathematics, vol.1607, 1995.

