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Abstract. As we all know, the whole space could not be a distributionally scrambled set
in a compact dynamical system. However, in a noncompact dynamical system, there were
examples which are weakly mixing and the whole space is a distributionally scrambled set.
Meanwhile, in this paper, we construct a noncompact metric space Y with the whole space
being weakly mixing but not distributionally chaotic. Moreover, the orbit of each point
x ∈ Y is dense in Y .
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1. Introduction. The complexity of dynamical systems can be well described by chaos.
Maps with different properties (such as weakly mixing, mixing) may generate different
chaotic behaviors. For example, in a compact system (X, f), if f is weakly mixing, then f
is distributional chaos in a sequence. We are interested in the relationship between weakly
mixing property and distributional chaos. In this paper, we construct a noncompact
metric space Y with the whole space being weakly mixing but not distributionally chaotic.
And, the orbit of each point x ∈ Y is dense in Y .

This paper is organized as follows. In Section 1, we briefly introduce our main purpose
and result. In Section 2, we summarize the recent progress in the study of distributional
chaos, and introduce some basic definitions which will be used in this paper. In Section
3, we construct a noncompact system, and prove that the system is weakly mixing, the
orbit of each point is dense in the system, but no distributionally chaotic pairs in the
whole space. In Section 4, we draw a conclusion: there exists a weakly mixing system
which does not exhibit distributional chaos no matter whether the system is compact or
noncompact.

2. Problem Statement and Preliminaries. Li and Yorke first put forward mathemat-
ical definition of chaos in 1975 [1]. Since then, chaos has had a more and more important
status in the research of the dynamical systems. The experts gave many definitions of
chaos from different angles, such as distributional chaos [2], distributional chaos in a se-
quence [3], and Kato chaos [4]. Among them, distributional chaos is a very important
concept which is introduced by Schweizer and Smital. Distributional chaos is defined by
scrambled sets, and the scrambled sets with special properties imply additional character-
istics of chaos. For example, Oprocha investigated some kinds of special distributionally
scrambled sets, such as extremal distributionally scrambled sets, transitive distribution-
ally scrambled sets in [5, 6]. So the size and property of scrambled set are crucial parts
in the research of distributional chaos.
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It is known that the whole space cannot be distributionally chaotic in a compact dy-
namical system [7]. However, we can find many examples such that the whole space is a
distributionally scrambled set in a noncompact dynamical system. Wang proved that the
whole space can be an extremal distributionally scrambled set in a weakly mixing sym-
bolic dynamical system [8]. Martinez-Gimenze et al. gave an example of linear operator
on Banach space which is weakly mixing and the whole space is a transitive distribu-
tionally scrambled set [9]. However, in [10], Oprocha inductively constructed a family
of sequences {wn}∞n=0, the limit of the sequences is x, and he proved that the compact
system (X, σ) (X is the closure of the orbit of x, σ is the shift map) is weakly mixing,
and does not exhibit distributional chaos. In this paper, we use a different method to
construct a noncompact system. And we prove that the noncompact system is weakly
mixing but not distributionally chaotic.

2.1. Several definitions. Throughout this paper, we always suppose that X is a metric
space with metric d, and f : X → X is a continuous map.

Definition 2.1. Suppose (X, f) is a dynamical system. (X, f) is called a compact system,
if X is compact.

Definition 2.2. Suppose (X, f) is a dynamical system. A nonempty subset Y ⊂ X is
called an invariant set, if Y satisfies f(Y ) ⊂ Y .

Definition 2.3. Suppose x ∈ X. A point y ∈ X is called a ω-limit point of x, if there
exists a sequence of positive integers {ni} such that fni(x) → y(ni → ∞). A set consisting
of all the ω-limit points of x is called a ω-limit set of x, denoted by ωf (x).

Definition 2.4. A set S ⊂ X (containing at least two points) is called a distributionally
scrambled set, if for all x, y ∈ S, x ̸= y, such that

(1) F ∗
xy(t) = lim sup

n→∞

1

n
♯{i | d(f i(x), f i(y)) < t, 0 ≤ i ≤ n − 1} = 1 for all t > 0,

(2) Fxy(ϵ) = lim inf
n→∞

1

n
♯{i | d(f i(x), f i(y)) < ϵ, 0 ≤ i ≤ n − 1} = 0 for some ϵ > 0.

where ♯C is the cardinal number of C. And the pair of points (x, y) is called distributionally
chaotic pair. f is called distributional chaotic, if it has an uncountable distributionally
scrambled set.

Definition 2.5. A map f is called weakly mixing, if for any four nonempty open subsets
I1, I2, K1, K2 of X, there exists a positive integer n such that fn(I1) ∩ K1 ̸= ∅ and
fn(I2) ∩ K2 ̸= ∅.

Definition 2.6. Suppose S = {0, 1}, Σ2 = {x = x0x1x2 . . . | xi ∈ S, i = 0, 1 . . .}. The
shift map σ : Σ2 → Σ2 is defined by: σ(x) = x1x2 . . . for any x = x0x1x2 . . . ∈ Σ2.

3. Main Result.

Theorem 3.1. There exists a noncompact dynamical system with the whole space being
weakly mixing but not distributionally chaotic. And, the orbit of each point is dense in
the system.

Proof: The first step is that we construct a weakly mixing dynamical system.
In this paper, the metric d of (Σ2, d) is defined as follows: for any x = x0x1x2 . . . , y =

y0y1y2 . . . ∈ Σ2,

d(x, y) =

{
0 if x = y

1
m+1

if x ̸= y and m = min{i|xi ̸= yi}

As we all know, σ is continuous and (Σ2, σ) is a compact dynamical system.
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For any x = x0x1x2 . . . ∈ Σ2, the finite sequence from the (i + 1)th symbol to the
(j + 1)th symbol of x is denoted by x[i, j], i.e., x[i, j] = xixi+1 . . . xj. If H is a finite
sequence, then |H| is its length.

We suppose that A is a finite sequence with length m + 1, denoted by A = x0x1 . . . xm.
For 0 ≤ i ≤ j ≤ m, we similarly define A[i, j]. If B is another finite sequence, AB is
defined the new sequence that directly combines A with B. If B appears in A, i.e., there
exist i and j such that B = A[i, j], we denote it by B ≺ A. We define [A] = {y ∈ Σ2 |
yi = xi, 0 ≤ i ≤ m}. If there exists some i ≥ 0 such that B = A[i,m] (i.e., B appears
at the tail of A), we denote it by B ◃ A. For convenience, we use ∅ to denote the empty
sequence of length 0, and assume that ∅ ◃ A for any finite sequence A.

At first, we suppose that {(a1
n, a

2
n, a3

n, a4
n)}∞n=1 is a sequence of arrangements of four

nonnegative integers. It is constructed as follows:

(1) (a1
1, a

2
1, a

3
1, a

4
1) = (0, 0, 0, 0);

(2) (a1
2, a

2
2, a

3
2, a

4
2), . . . , (a

1
17, a

2
17, a

3
17, a

4
17) are exactly all the 16 arrangements with ai

n ∈
{0, 1}, i = 1, 2, 3, 4, n = 2, 3, . . . , 17;

(3) (a1
18, a

2
18, a

3
18, a

4
18), . . . , (a

1
98, a

2
98, a

3
98, a

4
98) are exactly all the 81 arrangements with ai

n ∈
{0, 1, 2}, i = 1, 2, 3, 4, n = 18, 19, . . . , 98;

(4) . . .

From the construction above, we can see that for any arrangements of four nonnegative
integers (i, j, l, k), there exist infinitely many n such that (a1

n, a2
n, a

3
n, a4

n) = (i, j, l, k).
We use u to denote the one-sided infinite sequence that contains only one symbol 0,

that is u = 000 . . . ∈ Σ2. Similarly, v = 111 . . . ∈ Σ2.
Now, we construct a family of finite sequences {Pn}∞n=1. Let P1 be the sequence which

only has one symbol 0, that is P1 = 0. And we define p1 = |P1|. Then for any n ≥ 1, we
inductively define Pn+1 and pn+1 as follows:

(1) At first, let En = PnPn and F i
n = En[ai

n, a
i
n + pn − 1], i = 1, 2, 3, 4;

(2) Next, let Gn = F 1
nF 2

nF 3
nF 4

nJn, where Jn = v[0, 6pn − 1];
(3) At last, define Pn+1 = PnPnGn and pn+1 = |Pn+1|.

Thus, for any positive integer n, the finite sequence Pn has been defined. Obviously, for
any positive integer n ≥ 1, the sequence Pn+1 begins with Pn. Therefore, when n → ∞,
the finite sequence Pn extends to one-sided infinite sequence w ∈ Σ2.

Let Y = {x ∈ Σ2 | x = DTsGsTs+1Gs+1 . . . TnGn . . . , where s ≥ 1, D ◃ Ps, Tn =
Pn or ϕ,∀n ≥ s}. Obviously, Y is an uncountable set.

For any x = DTsGsTs+1Gs+1 . . . TnGn . . . ∈ Y , obviously, v = 111 . . . ∈ ωσ(x), but
v /∈ Y . Therefore, (Y, σ) is a noncompact dynamical system.

For any x = DTsGsTs+1Gs+1 . . . TnGn . . . ∈ Y , define x(s) = D. And for any n ≥ s + 1,
we denote x(n) = DTsGsTs+1Gs+1 . . . Tn−1Gn−1. Because Pn = Pn−1Pn−1Gn−1 for any
n ≥ 2, it is easy to prove that x(n) ◃ Pn for any n ≥ s by the previous induction.
Moreover, Pn ≺ x for all positive integer n large enough. Therefore, for any x ∈ Y , we
can get three conclusions as follows:

(1) σ(x) ∈ Y , thus σ(Y ) ⊆ Y ,
(2) x ∈ ωσ(w), thus Y ⊆ ωσ(w),
(3) w ∈ ωσ(x), thus the orbit of x is dense in Y .

Next, we prove that (Y, σ) is weakly mixing.
For any four nonempty open sets U1, U2, V1, V2 of Y , as Y ⊆ ωσ(w), there must exist

finite sequences C1, C2, D1, D2 ≺ w such that [C1] ⊆ U1, [C2] ⊆ U2, [D1] ⊆ V1, [D2] ⊆ V2.
There exists large enough k such that C1, C2, D1, D2 ≺ Pk. We suppose

C1 = Pk[m1,m1 + |C1| − 1] C2 = Pk[m2,m2 + |C2| − 1]

D1 = Pk[l1, l1 + |D1| − 1] C2 = Pk[l2, l2 + |D2| − 1]
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As Pk = Pn[0, |Pk| − 1] for any n ≥ k, we have that for any n ≥ k,

C1 = Pn[m1,m1 + |C1| − 1] C2 = Pn[m2,m2 + |C2| − 1]

D1 = Pn[l1, l1 + |D1| − 1] C2 = Pn[l2, l2 + |D2| − 1]

By the structure of the sequences {(a1
n, a

2
n, a3

n, a
4
n)}∞n=1, there must be some n ≥ k such

that (a1
n, a

2
n, a3

n, a4
n) = (m1, l1,m2, l2). As w = PnPnF 1

nF 2
nF 3

nF 4
n . . ., we have σ2pn(w) ∈

[C1] ⊆ U1 and σ3pn(w) ∈ [D1] ⊆ V1. Then σ3pn(w) ∈ σpn(U1) ∩ V1, σpn(U1) ∩ V1 ̸= ϕ.
Similarly, we can prove σpn(U2) ∩ V2 ̸= ϕ. Hence, (Y, σ) is weakly mixing.

The second step is that we prove the previous system is not distributionally chaotic.
Suppose (Y, σ) is the system which is constructed in the previous section. Next we

prove that for any x, y ∈ Y , x ̸= y, the pair of points (x, y) is not distributionally chaotic.
That is, for any x, y ∈ Y , x ̸= y, Fxy(ϵ) > 0 for all ϵ > 0.

For any x, y ∈ Y , x ̸= y, we suppose x = DTsGsTs+1Gs+1 . . . TnGn . . ., where s ≥
1, D ◃ Ps, Tn = Pn or ϕ, for all n ≥ s. y = D

′
T

′

s
′Gs

′T
′

s
′
+1

Gs
′
+1 . . . T

′
nGn . . ., where

s
′ ≥ 1, D

′ ◃ Ps
′ , T

′
n = Pn or ϕ, for all n

′ ≥ s. For any n ≥ max{s + 1, s
′
+ 1}, we define

x(n−1) = DTsGsTs+1Gs+1 . . . Tn−2Gn−2

y(n−1) = D
′
T

′

s′
Gs

′T
′

s′+1
Gs

′
+1 . . . T

′

n−2Gn−2

Then x(n−1) ◃ Pn−1, y(n−1) ◃ Pn−1.
Because x ̸= y, there must exist n0 ≥ max{s + 1, s

′
+ 1} such that x(n) ̸= y(n) for any

n ≥ n0 (or else we must have x = y). Then for n ≥ n0,

x = x(n−1)Tn−1Gn−1TnGn . . . = x(n−1)Tn−1F
1
n−1F

2
n−1F

3
n−1F

4
n−1Jn−1TnGn . . .

y = y(n−1)T
′

n−1Gn−1T
′

nGn . . . = y(n−1)T
′

n−1F
1
n−1F

2
n−1F

3
n−1F

4
n−1Jn−1T

′

nGn . . .

Let tn−1 = ||x(n−1)Tn−1| − |y(n−1)T
′
n−1||. It is obvious that 0 ≤ |x(n−1)Tn−1| ≤ 2|Pn−1| =

2pn−1, and 0 ≤ |y(n−1)T
′
n−1| ≤ 2|Pn−1| = 2pn−1. Then 0 ≤ tn−1 ≤ 2pn−1. On the other

hand, |x(n−1)Tn−1| ̸= |y(n−1)T
′
n−1| (or else |x(n)| = |y(n)|, and hence x(n) = y(n) ◃Pn). Thus

0 < tn−1 ≤ 2pn−1.
Without loss of generality, we assume |x(n−1)Tn−1| > |y(n−1)T

′
n−1|.

For any ϵ > 0, there must exist a positive integer N satisfying 1
N

< ϵ.
For n ≥ n0, let

rn−1 = |x(n−1)Tn−1F
1
n−1F

2
n−1F

3
n−1F

4
n−1|

qn−1 = |y(n−1)T
′

n−1F
1
n−1F

2
n−1F

3
n−1F

4
n−1Jn−1|

Then rn−1 ≤ 6|Pn−1| = 6pn−1, qn−1 ≥ 10|Pn−1| = 10pn−1, and

x[rn−1, qn−1 − 1] = Jn−1[0, qn−1 − rn−1 − 1] = 11 . . . 1

y[rn−1, qn−1 − 1] = Jn−1[tn−1, qn−1 + tn−1 − rn−1 − 1] = 11 . . . 1

When n is large enough, for any rn−1 ≤ i ≤ qn−1 − N , d(σi(x), σi(y)) < 1
N

< ϵ. Thus

Fxy(ϵ) = lim inf
n→∞

1

qn−1

♯{i | d(σi(x), σi(y)) < ϵ, 0 ≤ i ≤ qn−1 − 1}

≥ lim inf
n→∞

1

qn−1

♯{i | d(σi(x), σi(y)) < ϵ, rn−1 ≤ i ≤ qn−1 − N}

= lim inf
n→∞

qn−1 − N − rn−1 + 1

qn−1

≥ lim inf
n→∞

10pn−1 − N − 6pn−1 + 1

qn−1

≥ lim inf
n→∞

4pn−1 − N + 1

12pn−1

=
1

3

Then for any x, y ∈ Y , x ̸= y, Fxy(ϵ) > 0 for all ϵ > 0.
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From the above, we have proved that the noncompact system (Y, σ) is weakly mixing
and the orbit of each point x ∈ Y is dense in Y . However, there exists no distributionally
chaotic pairs.

4. Conclusions. In a weakly mixing system, someone proves that the whole space can
be a distributionally scrambled set. Oprocha proves that there exists a compact system
which is weakly mixing but not distributionally chaotic. We prove that there exists a
noncompact system with the whole space being weakly mixing but not distributionally
chaotic. Moreover, we draw a conclusion: there exists a weakly mixing system which does
not exhibit distributional chaos no matter whether the system is compact or noncompact.
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