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Abstract. In this paper, by using scalability property of projective space, we provide
a fast consensus based maximum likelihood estimation in multi view object localization.
We bring a proof that our proposed approach is converged and simulation results show
that our proposed approach is faster in comparison with the traditional approach.
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1. Introduction. With increasing interest in wireless sensor networks, the use of the
multiple-view structure in the object tracking applications is increased [1, 2, 3, 4]. In
these systems, data of a scene from all the views should be illustrated in the same coor-
dination, namely global coordination. Relations between cameras’ coordination and any
arbitrary global coordination are described by homography which is a popular nonlinear
transformation (in Euclidean geometry) in multi-view schemes. The use of homography
implies that the cameras’ data are represented in the projective geometry rather than
Euclidean geometry (or any other geometries) [5]. The most important property of the
projective geometry is that data in this form are unsensitive to scale. Though the relation
between each camera coordination and global coordination in Euclidean geometry is non-
linear, this relation in the projective geometry has a linear form. With this linear model
a maximum likelihood estimation is a good choice to estimate the objects’ coordination
in multi-view tracking systems.

Distributed data fusion is another important issue in the sensor networks applications
[6, 7] which increases the system’s ability in dealing with the failure in any part of the
network. Consensus algorithm is an efficient solution in distributed approaches in many
applications such as beam forming [8], spectral sensing in cognitive radio [9], target track-
ing [10, 11, 12] and adaptive filters [13]. In recent years, due to the improvements and the
extension ideas in sensor and multi-agent networks, consensus algorithm is also used in
data fusion [6, 14, 15]. In this procedure each node communicates only with its neighbors
and after several iterations, nodes reach the consensus in the whole network. Actually,
this consensus value (values) can play the role of an auxiliary variable or a cost function in
the network and help us reach the final purpose [16]. Consensus algorithm is organized in
Euclidean geometry and all iterations and its convergence criterion are described in this
geometry [17, 18]. In [19] a new criterion for convergence in the Riemannian manifold is
introduced. The projective geometry is a special type of Grassmann geometry [20] and
Grassmann geometry itself is a kind of Riemannian geometry. However, the convergence
of Riemannian consensus criterion is not guaranteed in every situation. Therefore, in this
work we do not use Riemannian manifold criterion for consensus. Instead, we propose a
new convergence criterion in the projective geometry.
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In this paper, we propose a consensus based MLE for the object localization in the pro-
jective geometry. For this purpose, we apply a modification in the Euclidean consensus
criteria and use the new criteria for consensus in the projective geometry. This paper is
organized as follows. In the next section, a short explanation of the consensus procedure
comes and the description of the distributed MLE algorithm which is presented in [6] is
developed. The problem statement and our proposed procedure are introduced in Section
3. Finally, in Section 4, with the numerical results we show our proposed scheme perfor-
mance with respect to the traditional consensus algorithms. Then the paper is terminated
by a conclusion.

2. Consensus Procedure. Consider a connected sensor network modeled by a digraph
G = (V, E ,A) with N edges, where V = {v1, v2, . . . , vN} is the set of nodes, E ⊆ V × V is
the set of edges so that (vi, vj) ∈ E if there is an edge between the ith and the jth nodes
and A is the digraph adjacency matrix. By assuming an arbitrary object on the plane as
p = (x, y, z) ∈ P

2 1 in homogeneous coordination (equal to (x/z, y/z) ∈ R
2), each camera

registers this object as p̃i = (x̃i, ỹi, z̃i) ∈ P
2, i ∈ V in its local coordination. Projective

geometry P
N is equivalent to GN,1

2, so the object location can be represented on the
Riemannian Geometry. If Hi ∈ R

3×3 denotes a homography between reference and the
ith camera coordination3, then relation between the object coordinate in each camera (p̃i)
and the reference coordinate (pi) is described as pi = Hip̃i [5]. Based on the proposed
approach in [6] for distributed consensus based MLE, Algorithm 1 shows the distributed
MLE for object tracking in the plane and obtains pML, where dij are the entry of the
consensus matrix and pML,i is the MLE of position of the object in the ith node.

Algorithm 1 Distributed MLE for Object Localization

1: for i = 1 → N do

2: Si(0) = HT
i Σ−1

i Hi

3: qi(0) = HT
i Σ−1

i p̃i(0)
4: end for

5: while Reaching to consensus in pML,i(k)s do

6: for i = 1 → N do

7: Si(k) =
∑N

j=1 dijSj(k − 1)

8: qi(k) =
∑N

j=1 dijqj(k − 1)

9: pML,i(k) = S−1
i (k)qi(k)

10: end for

11: end while

3. The Proposed Approach. In this section, we introduce an approach to increase
the speed of the consensus convergence. We propose a modified Euclidian consensus on
Projective geometry. Our algorithm uses this property of homogenous geometry that
(x, y, z) and (αx, αy, αz), where α is a nonzero coefficient, show the same point in R

2

geometry (equal to (x/z, y/z)). As mentioned in the introduction, the consensus algorithm
and convergence to consensus in the network are based in the Euclidean geometry, while
our problem is stated in the projective geometry. Therefore, because of “up to scale”
property of projective geometry, there are infinity options to represent location of object
in the projective geometry. For example, suppose the location of object in the plane
in the projective space is (x, y, z). In this situation, there is no difference whether the
consensus algorithm reaches to (x, y, z) or (αx, αy, αz), as both of these points show the

1Projective geometry
2Grassmann Geometry
3It depends on calibration matrix and the position of each camera [5].
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same point in the Euclidean geometry. It is worthwhile noting that location of object in
the Euclidean is our favorite and representation in projective geometry is only used for
mathematical computation.

Based on the above mentioned point, let an object localization problem with pC be
as the final consensus point. In each iteration, the consensus algorithm induces to each
node’s value pi(k) tended to pC (pi(k) → pC , i ∈ {1, 2, . . . , N}). In this work, as data
represented in the homogenous coordinates, at each moment, tending pi(k) to any mul-
tiplied value of pC causes the same point in R

2. Moreover, tending any multiplied value
of pi(k) to any multiplied value of pC(k) has the same results. So, in our approach,
the consensus procedure can be summarized in an attempt to establish a relationship

αi(k)pi(k) → γi(k)pC , or αi(k)
γi(k)

pi(k) → pC . Based on what was mentioned in the above,

we can compute coefficients βi(k) = αi(k)/γi(k), i ∈ {1, 2, . . . , N}, so that algorithm
converges to the final values faster. For better imagination, consider a problem in P

1 ge-
ometry by a set of two tuple vectors as pi(k), i ∈ {1, 2, 3} and consensus matrix initialized
below:

p1(0) =

[

6
7

]

, p2(0) =

[

2
4

]

, p3(0) =

[

4
13

]

, D =





0 0.5 0.5
0.5 0.5 0
0.5 0 0.5





According to this configuration, the final consensus vector equals pC =
[

4 8
]T

. Figure
1 shows the iterative changes in pi(k) for nodes 2 and 3 under the consensus algorithm.
As shown in Figure 1 at first iteration 0.8p3(1) ≈ pC and in second iteration 0.48p2(2) ≈
0.42pC . In other words, p3 reaches the final consensus value after first iteration and p2

reaches the final consensus after two iterations. All of the lying points on solid line are
equal in R geometry and only have a difference in an scale factor. More consideration
on Figure 1 shows that initial value of p2 is equal to pC . So, p2 does not need to be
changed in iterative consensus algorithm and it can be introduced as the final consensus
value. Therefore, we can propose a new stop condition in 5th row of Algorithm 1 and we
consider reaching consensus for βi(k)pML,i(k) instead of pML,i(k).
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Figure 1. Up to scale property in P
1. p3 gets consensus, almost, at k = 1

by setting α3(1) = 0.8 and γ3(1) = 1. Also p2 gets consensus, approxi-
mately, at k = 2 by setting α2(2) = 0.48 and γ2(2) = 0.42.

3.1. Obtaining β. In order to obtain β, two local error functions are considered as
follows:

Ei(k) =
∑

j∈Ni

‖βi(k)pi(k) − βj(k)pj(k)‖2 (1)

∆i(k) = ‖βi(k)pi(k) − p̂C,i(k)‖2 (2)

ϕi(k) = Ei(k) + ∆i(k) (3)

where Ni is the set of ith node’s neighbors.
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In (2) p̂C,i(k) is an approximation of pC in the ith node. An estimation value for p̂C,i(k)
is demonstrated in the next section.

Now, we calculate ∂ϕi(k)/∂βi(k) = 0 to obtain proportion βi(k). After some calcula-
tions, we have:

βi(k) =

1
|Ni|

∑

j∈Ni
βj(k)pT

i (k)pj(k) + pT
i (k)p̂C,i

2pT
i (k)p̂C,i

(4)

The first term in the numerator of (4) is induced by Ei and the second term is induced
by ∆i. By using (4) in each iteration we can obtain appropriate coefficients to reach the
consensus.

3.2. Approximation of pC . To approximate pC , different strategies such as local av-
eraging of each node and local weighted averaging of each node (based on the consensus
matrix’s rows values) can be used. Simulation results verified the performance of these
choices. In this paper, we use the latter. So, the estimated value is obtained as below:

p̂C,i(k) =

N
∑

j=1

dijpj(k) (5)

Obviously, when k increases, the above equation tends to pC .

3.3. Convergence analysis. The proposed algorithm in our proposed approach does
not have any stability and convergence issue. Since we do not modify traditional iterative
consensus algorithm, it can be resulted that:

lim
k→+∞

p̂C,i(k) = lim
k→+∞

pi(k) = pC (6)

In the convergence condition, with respect to (1), (2) and (3), it is obvious that the only
condition which can minimize (3) is that all values of βi(k) are equal to one. Therefore,
stop condition in our proposed approach will be identical to Algorithm 1 and algorithm
reaches to consensus, definitely. In the next section, simulation results of the convergence
procedure would be shown.

4. Experimental Results. In this section, we present simulation results of our proposed
approach. For this purpose, we construct a static random connected network. Also, we
select maximum-degree weighted matrix [6] as the consensus matrix. We use random
3 × 3 matrices for simulating calibration matrix of cameras and add independent white
Gaussian noise to the measurements. The results are obtained by averaging over 100
epoches by different random initial values.

Figure 2(a) and Figure 3(a) show the iteration numbers which needed to reach consensus
for S and q in different sizes of camera networks. As seen in these figures, in distributed
approach, number of iterations which is needed for convergency increases exponentially,
but our proposed fast distributed approach and ideal fast approach reach to consensus
faster than distributed ones and also their number of iterations increases linearly. The
ideal fast approach uses real value of the final consensus vector (pC). Therefore, it has the
best results, but it cannot be realized. As shown in the figures, our proposed method (fast
distributed approach) has significant improvement with respect to the standard consensus
algorithm. Finally, in Figure 2(b) and Figure 3(b), the ratio of α and γ in the 19th node
for a 20 cameras network is shown. Our approach has a fluctuational behavior in the first
iterations, as we used approximated function instead of pC ; however, by passing the time
and tending p̂C,i(k) to pC , the distributed approach ratio is converged to the ideal one.
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Figure 2. (a), (b) Iteration numbers versus different network sizes and α
γ

in the 19th node for S
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Figure 3. (a), (b) Iteration numbers versus different network sizes and α
γ

in the 19th node for q

5. Conclusion. In this paper, we introduced a fast and distributed maximum likelihood
estimation using the consensus algorithm. Our approach utilizes “up to scale” property in
projective geometry to reach the consensus quickly. The difference between nodes’ values
and meanwhile the difference between nodes’ values and consensus values are evaluated
by two error functions. To estimate consensus value in the second error function, we used
local weighted average of each node. Experimental results show that this estimation can
improve the convergence speed.
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