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Abstract. Fireworks algorithm (FA) is a new parallel diffuse optimization algorithm to
simulate the fireworks explosion phenomenon, which realizes the balance between global
exploration and local searching by means of adjusting the explosion mode of fireworks
bombs. Through generating a certain number of fireworks shells in the function search-
ing scope, the bombing operation is carried out for each fireworks bomb, which realizes the
random search on the certain neighborhood scope of the original fireworks (burst points)
by the explosion Mars. At the same time, FA with different parameters is carried out of
the simulation experiments to verify the influence of different parameters on the func-
tion optimization performance. Simulation results show that the initial seed number of
fireworks algorithm has influence on the solution accuracy and optimization ability.
Keywords: Fireworks algorithm, Function optimization, Performance comparison

1. Introduction. The nature of function optimization problem is to find the optimal
solution of an objective function through iterative [1]. The function features are usually
described as continuous, discrete, linear, non-linear, convex function, etc. In that the
constraint function optimization problem can be converted into unconstrained problem
by using the designed special operators and penalty functions to make solution always
feasible, the unconstrained function optimization problem is the main research focus. The
swarm intelligent optimization algorithms [2] are a kind of random search algorithm to
simulate the biological population evolution and evolution, which solve the complex global
optimization problems through individual cooperation and competition between species,
and are applied in many fields, such as multi-objective optimization, data mining, net-
work routing, signal processing, and pattern recognition. The typical swarm intelligence
optimization algorithms include ant colony optimization (ACO) algorithm [3], genetic
algorithm (GA) [4], particle swarm optimization (PSO) algorithm [5], and artificial bee
colony (ABC) algorithm [6].

Fireworks algorithm (FA) is a new swarm intelligence algorithm proposed by Tan and
Zhu in 2010 [7], which has excellent optimization performance and arouses widespread
concern in the world [8]. FA has been applied for solving many practical optimization
problems [9,10]. Janecek and Tan [9] used FA together with particle swarm optimization
(PSO), genetic algorithms (GA), differential evolution (DE), and fish school search for
improving the initialization of non-negative matrix factorization (NMF). Bureerat [10]
compared twelve different optimization algorithms on 35 benchmark functions with dif-
ferent dimensions ranging from 2 to 30. However, on the other hand, the research on the
performance analysis of algorithm parameters of FA has not been carried out. In this pa-
per, an unconstrained function optimization problem is solved by FA and the parameters
performance analysis is carried out. The paper is organized as follows. In Section 2, the
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fireworks algorithm is introduced. Then, the simulation results are described in Section
3. Finally, the conclusion is illustrated in the last part.

2. Fireworks Algorithm. Fireworks algorithm (FA) is a new parallel diffuse optimiza-
tion algorithm to simulate the fireworks explosion phenomenon, which realizes the balance
between global exploration and local searching by means of adjusting the explosion mode
of fireworks bombs. Its algorithm procedure is shown in Figure 1. Through generating a
certain number of fireworks shells in the function searching scope, the bombing operation
is carried out for each fireworks bomb, which realizes the random search on the certain
neighborhood scope of the original fireworks (burst points) by the explosion Mars.

Figure 1. Algorithm procedure of FA

2.1. Description of FA. FA is to solve a kind of optimization problem min f(x), xmin <
x < xmax, where x = x1, x2, . . . , xd represents a potential solution. So the number of
sparks produced by each firework xi is described as follows.

si = m · ymax − f(xi) + ε∑n
i=1(ymax − f(xi)) + ε

(1)

where m is to control the total number of sparks produced by n fireworks.

ymax = max(f(xi)) (i = 1, 2, . . . , n) (2)

where ymax is the maximum of objective functions under the worst case in n fireworks.
In order to avoid worse case under bad firework explosion, its scope si is defined as:

ŝi =


round(a · m) if si < am

round(b · m) if si > bm

round(si) otherwise a < b < 1

(3)

where a and b are fixed constant parameters.
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The explosion amplitude of each firework is defined as follows:

Ai = A · f(xi) − ymin + ε∑n
i=1(f(xi) − ymin) + ε

(4)

where A represents the maximum explosion amplitude, ymin = min(f(xi)) (i = 1, 2, . . . , n)
is the minimum objective function value in n fireworks.

During the explosion process, spark may be affected by any direction (dimension). In
FA, the number of arbitrary affected directions is defined as:

z = round(d · rand(0, 1)) (5)

where, d is the dimension of position x, rand(0, 1) is a uniform distribution on the interval
[0, 1].

2.2. Determination of spark locations. Spark location of firework xi can be obtained
by Algorithm 1. By imitating the explosion process, the position x̂j of a spark is produced.
Then, if the obtained position is beyond the potential space, it is changed into the potential
space by Algorithm 1.

Algorithm 1: Obtain the spark location
Initialize position xj = xi;
z = round(d · rand(0, 1));
Randomly select x̂j with Z dimension and calculate shift h = Ai · rand(−1, 1);

For each dimension xj
k ∈ {pre-selected z dimension – xj}

Set xj
k = xj

k + h. If xj
k < xmin

k or xj
k > xmax

k

Convert xj
k to the potential space xj

k = xmin
k + xj

k • (xmax
k − xmin

k );

for each dimension xj
k ∈ {pre-selected z of xj}

xj
k = xj

k + h;

x̂j
k = x̂j

k + h

if xj
k < xmin

k or xj
k > xmax

k then

map xj
k to the potential space;

end if
end for

In order to keep the spark diversity, a Gauss explosion method shown in Algorithm 2
is adopted to produce sparks. m̂ sparks are produced in each Gauss explosion.

Algorithm 2: Obtain a certain spark position
Initialize the spark position x̂j = xi;
z = round(d · round(0, 1));
Randomly select x̂j with z dimension;
Calculate the coefficient of Gauss explosion g = Gaussian(1, 1);

for each dimension xj
k ∈ {pre-selected z of xj}

x̂j
k = x̂j

k · g;

if xj
k < xmin

k or xj
k > xmax

k then

map xj
k to the potential space;

end if
end for

2.3. Selection of explosion positions. At the beginning of each explosion, n location
should be chosen to realize the fireworks explosion. In FA, the best location x∗ according
to the best objective function f(x∗) is retained for the next explosion. Since then, the
selection of n−1 position is based on the distance with other positions to keep the diversity
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of sparks. In general, the distance between position xi and other positions is calculated
as follows:

R(xi) =
∑
j∈k

d(xi, xj) −
∑
j∈k

xi − xj (6)

where, k is the current position set of all fireworks and sparks.
A selection probability of position xi is defined as follows:

p(xi) =
R(xi)∑
j∈k R(xj)

(7)

Algorithm 3: Construction of FA
Initialize n positions of fireworks randomly;
while Stop criterion is false

Detonate n fireworks in n positions respectively;
for Each firework xi

Calculate the spark number ŝi produced by those fireworks by Equation (3);
Obtain the position of spark si of firework xi based on Algorithm 1;

end for
for k = 1 : m̂

Select a firework xi randomly;
Produce a certain spark of the above firework based on Algorithm 2;
Save the best position to the next explosion;
Based on the given probability by Equation (7), select n − 1 position randomly
from two sparks and the current firework.

end while

In FA, each generation carries out about n+m+m̂ function estimations. If the optimum
of a certain function can be found in generation T , the complexity of FA is o∗(n+m+m̂).

3. Simulation Results. In order to discuss the performance influence of FA parame-
ters, two benchmark functions shown in Table 1 are adopted to carry on the simulation
experiment. The feasible range of these unconstrained function minimization problems is
set as [−100, 100] and the dimension D is 30.

Table 1. Four benchmark functions used in the simulation experiments

Function Expression

Rastrigin F1 =
∑D−1

i=1

(
100 (xi+1 − x2

i )
2
+ (xi − 1)2

)
Griewank F3 = 1 +

∑D
i=1

x2
i

4000
−

∏D
i=1 cos

(
xi√

i

)
When the number of FA seeds is set as 2, 4, 6 and 8, respectively, the optimized curves

of various functions are shown in Figures 2(a) and 2(b). It can be seen from Figure 2
that the convergence of all function is worse under 2 seeds and 4 seeds. The smaller the
number of seeds is, the worse the convergence performance of the FA is. However, when
the number of seeds reaches a certain value, the convergence does not change with its
increase.

When the subalgebra number of FAs is set as 40, 48, 56 and 64, respectively, the
optimized curves of various functions are shown in Figures 3(a) and 3(b). It can be seen
form Figure 3 that the subalgebra number of FAs has little effect on the optimization
performance despite of Ackley function.
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(a) Rastrigin function (b) Griewank function

Figure 2. Curves under different number of FA seeds for two benchmark functions

(a) Rastrigin function (b) Griewank function

Figure 3. Curves under different subalgebra number of FAs for two bench-
mark functions

4. Conclusions and Future Work. Fireworks algorithm is adopted to solve the un-
constrained function optimization problem and the parameters performance analysis is
carried out. Simulation results show the validity of the proposed method. In future, this
method could be extended to deal with the other optimization problems.
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