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Abstract. It is essential to investigate coupling and loop pairing to determine control
system configurations. This paper presents a new control-loop configuration criterion
for multi-input multi-output (MIMO) processes based on relevant information-theoretic
knowledge. Firstly, we propose a new variable pairing rule based on mutual informa-
tion rate (MIR) among input and output variables. The information coupling strength is
formulated in terms of mutual information rates. Then, the straightforward MIR calcula-
tion using frequency formula in MIMO linear time invariant (LTI) systems is introduced
briefly under information-theoretic framework. Finally, two numerical examples are pro-
vided to demonstrate the effectiveness of the above coupling measure and the variable
pairing rules. In addition, we analyze the simulation MIR results, which are consistent
with RNGA method.
Keywords: MIMO processes, Variable pairing, Coupling measure, Mutual information
rates

1. Introduction. Decentralized control strategies are widely utilized in practical mul-
tivariable industrial processes due to its easy design, tuning, implementation and main-
tenance [1-4]. Because the control performance of multi-input multi-output (MIMO)
systems will deteriorate with increasing loop interactions, it is necessary to reduce inter-
actions among loops by properly pairing the manipulated variables (MVs) and controlled
variables (CVs).

Some efforts have been conducted to analyze interactions and pair loops; the control
system configurations can then be determined. The concept of relative gain array (RGA)
put forward by Bristol is the most popular method to determine the interactions be-
cause of its simple calculation [5]. RGA may lead to unreasonable variable pairing results
due to only taking into account steady-state gain. Several improved RGA methods were
then proposed. Witcher and McAvoy proposed the dynamic relative gain matrix, which
uses the transfer function to calculate dynamic RGA rather than the steady-state gain
matrix [6]. Xiong et al. introduced the effective relative gain array (ERGA) to compre-
hensively reflect the dynamic and static characteristics by employing bandwidth of the
transfer function element to amend steady-state matrix [7]. Xiong et al. also presented
an alternative method to calculate ERGA for control systems with delay by replacing the
bandwidth with the cut-off frequency [8]. Although the cut-off frequency based approach
is more accurate and comprehensive for describing loop interactions, the cut-off frequency
can hardly be calculated for the process with large delay. He et al. put forward a relative
normalized gain array (RNGA), which uses the normalized integrated error to measure
the transient information and the steady-state gain of the process [9].
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Up till now, very few efforts have been made to investigate interaction and loop pairing
of MIMO dynamic systems in the framework of information learning. Wiener pointed
out many complicated control systems can be investigated by combining information and
control theories [10]. Chen et al. presented several system parameter identification algo-
rithms via information criteria [11,12]. Wang and Guo proposed a series of approaches
to modeling, filtering and control of stochastic distribution systems [13,14]. Zhang et al.
[15] proposed a minimum entropy-based performance assessment method for the feed-
back control loops subjected to non-Gaussian disturbances. Ren et al. [16] investigated
nonlinear multivariate and non-Gaussian systems using the generalized density evolution
equation and presented a control strategy based on an improved entropy criterion.

Following the concept of the mutual information rate (MIR) among variables of an
MIMO dynamic system [12], an alternative loop pairing method based on MIRA, RGA
and Niederlinski index (NI) is proposed, which considers the information coupling of trans-
fer function comprehensively under information theoretic framework different from some
traditional methods. With the aid of the simple frequency calculation of input-output
mutual information rate, the relative variables pairing rules can then be formulated. Ow-
ing to the completely new angle, simple calculation and combining with the advantages
of RGA and NI method, the MIRA based method is comprehensive and simple for field
engineers to understand and employ in practical applications. Several typical examples
are provided to testify the proposed loop pairing decisions.

This paper is organized as follows. Section 2 presents the loop pairing criteria based on
MIR-RGA-NI. Section 3 summarizes the procedures to implement the proposed loop pair-
ing method. In Section 4, the proposed loop pairing method is applied in two illustrative
examples to verify its effectiveness. Finally, the last section concludes this paper.

2. Loop Pairing Criteria. In this section, incorporating the information coupling stren-
gth array into the classical RGA-NI loop pairing method, a novel loop pairing method is
presented.

2.1. RGA-NI loop pairing method. The relative gain for an MIMO process is defined
by [5]

λij =
(∂yi/∂uj)uk ̸=j=c

(∂yi/∂uj)yl̸=i=c

(1)

where λij is the relative gain of loop yi −uj; (∂yi/∂uj)uk ̸=j=c is the open-loop steady-state
gain and (∂yi/∂uj)yl̸=i=c the gain uj to yi when all other loops are closed.

The RGA denoted by Λ can be expressed by

Λ =


λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n
...

...
. . .

...
λn1 λn2 · · · λnn

 (2)

and calculated directly by open-loop steady-state gain

Λ = G(0) ⊗ G−T (0) (3)

where Hadamard product, ⊗, is the element-by-element product. G(0) is the steady-state
gain matrix. G−T (0) is the transpose of the inverse of G(0).

In addition, NI is often considered when designing MIMO control systems, because
the stability of a multiple-loop system can be judged by the positive-negative of NI when
all loops are closed [6]. NI provides a necessary condition for a stable paired system. If
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NI < 0, the system is unstable.

NI =
|G(0)|
n

Π
i=1

gii(0)
(4)

where |G(0)| is the determinant of matrix G(0); gii(0) are the main diagonal elements of
matrix G(0).

2.2. MIRA-based loop pairing method. Mutual information rate (MIR) can be uti-
lized to represent not only steady coupling but also dynamic coupling. In particular, it is
natural to deal with stochastic disturbances in MIMO systems as well.

Each MIMO dynamic system can be regarded as an information or uncertainty trans-
mission channel under information theoretic framework. Figure 1 shows the information
flow of an MIMO dynamic system. The mutual information rate can be employed to rep-
resent information coupling strength because Īij(uj; yi) measures the average amount of
information between the manipulated variable (MV) uj and the controlled variable (CV)
yi. The information or uncertainty transmission of the channel uj → yi increases with Īij.
The controlled variable (CV) yi contains no information about uj when Īij = 0.

Figure 1. Information flow in the MIMO dynamic system

The mutual information rate array (MIRA) for an MIMO system can be expressed by

Ī =


Ī11 Ī12 · · · Ī1n

Ī21 Ī22 · · · Ī2n
...

...
. . .

...
Īn1 Īn2 · · · Īnn

 =


Ī(u1; y1) Ī(u2; y1) · · · Ī(un; y1)
Ī(u1; y2) Ī(u2; y2) · · · Ī(un; y2)

...
...

. . .
...

Ī(u1; yn) Ī(u2; yn) · · · Ī(un; yn)

 (5)

The loop pairing method is then proposed based on MIR and Niederlinski index (NI).
MVs and CVs in an MIMO system should be paired so that the following rules hold:

Rule 1: The elements of the paired RGA are positive.
Rule 2: NI is positive for paired loops.
Rule 3: The diagonal elements of the paired MIRA are the biggest one in its row or

column.
Rule 1 guarantees the paired loops have small steady coupling. Rule 2 provides a

necessary condition to maintain stability of the paired MIMO system. Compared with
existing variable pairing methods, the MIRA uses the information theory to make com-
prehensive consideration for the total system not for separating steady-state and transient



1410 J. ZHANG, Y. KUAI, M. LIN, T. ZHANG AND G. HOU

information. Besides, owing to the above properties of Īij(uj; yi), the paired elements are
convenient to be determined. So the MIR-based pairing rules can provide simpler, more
accurate and more comprehensive coupling measures and pairing results.

Remark 2.1. Due to the non-negative property of the mutual information rate, we do
not need to emphasize that the elements of the paired MIRA are positive.

3. MIRA Calculation of LTI MIMO Systems. In this section, the frequency formula
of calculating MIRA of an LTI MIMO system is introduced briefly. The generality of this
algorithm is applied to the special case study of the LTI MIMO systems expressed by{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(6)

where x = [x1, x2, . . . , xn]T ∈ Rn, u = [u1, u2, . . . , um]T ∈ Rm and y = [y1, y2, . . . , ym]T ∈
Rm are system state, input vector and output vector respectively. A, B and C are the
matrices with proper dimensions.

The transfer function of the system is

Ḡ(z) = C(zI − A)−1B (7)

The frequency domain ω form is obtained by replacing z with ejω

Ḡ(ω) = C
(
Iejω − A

)−1
B (8)

where Ḡ(ω) is an m × m rational fractional matrix and Ḡ(z) ∈ RH∞ if the system is
stable. Denote the ith row jth column element of Ḡ(ω) by Ḡij(ω). Before introducing
the calculation process of the frequency formula of the input-output MIRA, the following
lemmas and assumption should be given.

Lemma 3.1. Let Ḡ(z) ∈ RH∞ be the m × n transfer function matrix of a discrete-time
MIMO LTI system. If the stationary input process u(k) ∈ Rn has the spectral density Φx,
the spectral density of the output will be Φy = Ḡ(ω)ΦuḠ

∗(ω) where Ḡ∗(ω) is the conjugate
of Ḡ(ω).

Lemma 3.2. [17] Under the stationary Gaussian processes, the mutual information rate
can be expressed as

Ī({Xt}; {Yt}) =
1

4π

∫ π

−π

ln
det ΦX(ω) det ΦY (ω)

det ΦZ(ω)
dω (9)

where {Xt ∈ Rn, t ∈ Z} and {Yt ∈ Rm, t ∈ Z} are two joint Gaussian stationary processes
respectively having spectral densities ΦX(ω) and ΦY (ω), and ΦZ(ω) is the spectral density
of {Zt = [XT

t , Y T
t ] ∈ Rn+m, t ∈ Z}.

Assumption 3.1. In the system (6), the input vector u(k) is a zero-mean unit Gaussian
white noise with spectral density of m × m identity matrix I.

According to the above assumption and Lemma 3.1, the spectral density of output
vector yi(k) is

Φyi(ω) = Ḡi(ω)Φuj(ω)Ḡ∗
i (ω) = Ḡi(ω)Ḡ∗

i (ω) =
m∑

j=1

|ḡij(ω)|2 (10)

Utilizing this property, construct a novel transfer function as follows:

Tij(ω) =

[
0 · · · 1 · · · 0

ḡi1(ω) · · · ḡij(ω) · · · ḡim(ω)

]
(11)

Then the new fictitious output vector can be denoted by

ηij(ω) = Tij(ω)Ū(ω) =

[
ūj(ω)
ȳi(ω)

]
(12)
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where the input vector Ū(ω) = [ū1(ω) · · · ūj(ω) · · · ūm(ω)]T .
According to Lemma 3.1, the spectral density of ηij(ω) is derived as follows

Φηij(ω) = Tij(ω)T ∗
ij(ω) =

[
1 ḡ∗

ij(ω)
ḡij(ω) Φyi(ω)

]
(13)

Because detΦuj(ω) = 1 and detΦηij(ω) = Φyi(ω)− ḡij(ω)ḡ∗
ij(ω) = Φyi(ω)−|ḡij(ω)|2, the

mutual information rate Ī(uj; yi) can be calculated according to Lemma 3.2.

Ī(uj; yi) =
1

4π

∫ π

−π

ln
det Φuj(ω) det Φyi(ω)

det Φηij(ω)
dω

=
1

4π

∫ π

−π

ln
Φyi(ω)

Φyi(ω) − |ḡij(ω)|2
dω

(14)

Remark 3.1. The mutual information rate between input and output variables reflects
dynamic and steady coupling.

4. Illustrative Case Studies. A potential weakness of RGA or RGA-NI methods is
that they only use the steady state gains which are based on the assumption of perfect
loop control to determine loop pairing. Considering the information of transfer function
comprehensively, MIRA based method can show better dynamic applicability. We use
the following typical examples to illustrate this point, where the RGA method fails and
gives erroneous results.

Case 1. Consider the following two-input two-output transfer function [9]:
5e−s

100s + 1

e−4s

10s + 1

−5e−4s

10s + 1

5e−s

100s + 1

 (15)

The results obtained from RGA, RNGA and MIRA loop pairing methods are shown in
Table 1.

Table 1. Loop pairing results

Tools RGA RNGA

Calculated results

[
0.8333 0.1667
0.1667 0.8333

] [
0.0867 0.9124
0.9124 0.0867

]
Conclusions Diagonal pairing Off-diagonal pairing

Tools MIRA NI

Calculated results

[
0.1293 2.2650
0.7778 0.0070

]
5.9989

Conclusions Off-diagonal pairing Positive

Case 2. Consider the following three-input three-output transfer function [9]:

e−9s

6s2 + 17s + 1

−9e−5s

s2 + 4s + 1

13e−3s

3s2 + 35s + 1

−5e−13s

2s2 + 19s + 1

8e−2s

s2 + 33s + 1

7e−5s

s2 + 3s + 1

−16e−3s

s2 + 5s + 1

3e−7s

s2 + 14s + 1

e−11s

3s2 + 25s + 1

 (16)

The results obtained from RGA, RNGA and MIRA loop pairing methods are shown in
Table 2.
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Table 2. Loop pairing results

Tools RGA RNGA

Calculated

results

 −0.0054 0.3981 0.6073

−0.0992 0.6912 0.4080

1.1046 −0.0893 −0.0153

  −0.0024 0.9237 0.0787

−0.0063 0.0829 0.9235

1.0088 −0.0066 −0.0022


Conclusions Off-diagonal pairing 1-2, 2-3, 3-1

Tools MIRA NI

Calculated

results

 0.0003 1.5824 0.0286

0.0141 0.0165 1.5487

2.5178 0.0034 0.0001

 2.3998

Conclusions 1-2, 2-3, 3-1 Positive

It can be observed from Table 1 and Table 2 that MIRA based method can determine
the loop pairs. Compared with RGA based method, the results obtained based on MIRA
method are more accurate and comprehensive due to taking dynamic information into
consideration. Owing to the monotonicity and non-negative properties of MIRA method,
it is very convenient to determine the pairing relationship compared with RNGA based
method. In addition, MIRA can be directly calculated according to the derived frequency
formula.

5. Conclusion. In this paper, an MIRA based loop pairing criterion is proposed. MIR is
introduced to measure the information couplings among multiple variables. The presented
method is then applied into two illustrative examples to testify its effectiveness. The
general MIRA based loop pairing method will be investigated for MIMO nonlinear systems
in further research.
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